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1. Software Visual-XSel  

All of the methods in this book can be performed with the software Visual-XSel  
 

 
 

 

 

For more information, please goto www.crgraph.com 

Please ask for a test version via info@crgraph.de 
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2. Introduction 

 
Reliability is 

 
 

 
 
 
 

 
 
 

 

 
 
 

 
Mathematically, the statistical fundamen-
tals of Weibull and the associated distri-
bution in particular are used to define 
reliability and unreliability.  
This distribution was named by Waloddi 
Weibull who developed it in 1937 and 
published it for the first time in 1951. He 
placed particular emphasis on the versati-
lity of the distribution and described 
7 examples (life of steel components or 
distribution of physical height of the British 
population).   
Today, the Weibull distribution is also used 
in such applications as determining the 
distribution of wind speeds in the design 
layout of wind power stations. 
The then publication of the Weibull 
distribution was disputed – today it is a 
recognised industrial standard.  
 
This study concerns itself with statistical 
methods, especially those formulated by 
Weibull. The Weibull analysis is the classic 
reliability analysis or the classic life data 
diagram and is of exceptional significance 
in the automobile industry. The "charac-
teristic life" as well as a defined "failure 
probability“ of certain components can be 
derived from the so-called Weibull plot. 
 

 when a product does not fail  
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It is proven to be of advantage to assume the cumulative distribution of failures as the 
basis for calculations. The distribution form used in the Weibull calculation is especially 
suited to this field of application. In general terms, the Weibull distribution is derived 
through exponential distribution. Calculations are executed in this way because:  
 

 Many forms of distribution can be represented through the Weibull distribution  

 In mathematical terms, the Weibull functions are user-friendly  

 Time-dependent failure mechanisms are depicted on a line diagram  

 The method has proven itself to be reliable in practical applications 
 
The methods and calculations discussed in this study are based on the corresponding 

VDA® standard and extend to practical problem solutions based on realistic examples.  

 
Various methods (discussed in detail in this study) are used for the purpose of 
determining the parameters of the Weibull functions. Mathematical methods of deriving 
the parameters are generally not used in the majority of cases. Reference is therefore 
made to the corresponding specialised literature.  
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3. Basics for a lifetime analysis 

This is a series of tests with n = 30 ball 
bearings, which are "driven" up to a test 
bench. 
The cycles are initially carried out in a sheet 
entered, sorted in ascending order.  
The frequencies are then H = i / n   
 

 

 

 

 

 

 

 

 

 

 

 

 

By multiple logarithmic axes you get a straight line. These axes scaling is not possible 
in MS-Excel. This representation is also called the Weibull net. The frequencies are 
calculated here using a correction formula, since one assumes a sample in which one 
does not reach the 100% of the population at i = n. Here the frequency is therefore 
H=(i-0,3)/(n+0,4) 

 

 

 
The 2-parametric Weibull probability net 
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Building up the Weibull net 

 

 Step 0: Data preparation and relevant unit.  
 Where does the data come from and what is the  
 correct reference? 

 
 Step 1: Determining failure frequencies.  

The information of the running times is given  
(X position).  Determination of the cumulative  
frequencies of the points (Y- direction). 

 
 Step 2: The Weibull function & parameters 

 How to draw the straight line through the points.  
  Calculation of the Weibull parameter  
   Weibull function 

 
 Step 3: Interpretation of the Weibull parameters. 

 Which information tell us the slope parameter b   
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Step 0: Data preparation and relevant unit 

Generally, the reliability of components, units and vehicles can be determined only 
when failures occur, i.e. when the service life of the units under observation is reached. 
It is first necessary to verify the service life, e.g. by way of testing, in the laboratory or 
in the field, in order to be able to make a statement concerning or deduce the reliability.  
 
Life characteristic 

In the majority of cases, the life characteristic or lifetime variable t is a  
- driven distance 
- operating time 
- operating frequency 
- number of stress cycles 
One of these data items relating to the "defective parts“ to be analysed must be 
available and represents the abscissa in the Weibull plot.  
 
Classification 

For a random sample of n>50, the failures are normally classified such as to combine 
certain lifetime ranges. Classification normally results in a more even progression of 
the "Weibull curve“. The classification width can be estimated in accordance with 
Sturges with  

)lg(

1

32,31 n
K

br 
  

In practical applications, the class width or range, especially for field data involving 
kilometre values, is appropriately rounded up or down to whole thousands, e.g. 
1000 km, 2000 km, 5000 km etc. In the frequency distribution (density function), the 

classes are assigned midway between 500  X  1500 km. In the cumulative 
distribution, however, the classes must be referred to the upper classification limit: 
1..1000, 1001..2000, 2001..3000 are assigned to the classes 1000, 2000 and 3000 km 
etc.  
Inevitably, data are lost through classification, resulting in slight deviations for different 
classifications when calculating the Weibull parameters. The same procedure or the 
same classification should therefore always be chosen when comparing different 
analyses.  
 
Multiple failures 

It is important to note that in the case of "multiple failures" for which classes are 
defined, the result is not the same as when each failure is specified individually one 
after the other. For example: both tables represent the same circumstances, the first 
set of data is classified the lower set is listed as individual values:  
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Classified data  
 
 
 
 
 
 

 
 
 
 
Individual values 
          
 

 

 
 
 
 
 
 
 
 
 
 
When represented in the Weibull plot as a best-fitting straight line, there are differences 
in the Weibull parameters attributed to the point distribution in the linearised scale. 
Although the classification is therefore not incorrect, it is recommended as from a 
quantity of more than 50 data items.  
 
0-running time failures 
Parts which are defective before being put to use are to be taken out of the evaluation. 
These parts are known as “0-km failures”. Added to this, points with the value 0 are 
not possible in the logarithmic representation of the X-axis  in the Weibull plot. There 
is also the question of how failures are counted that have a distance rating of 50, 100 
or 500 km as these failures also attributed to a defect or any other reasons. Particular 
care must be taken when defining the classification to ensure that mathematically the 
distance covered (mileage) is set to 0 between 0 and the next classification limit 
depending on the width of the classification range. The number of these "0-km failures" 
is to be specified in the evaluation.  
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General evaluation problems 

If it is necessary to analyse failed components that were already in use (so-called in-
field failures), the failure probability can be calculated using the previously described 
methods. A defined production quantity n is observed for a defined production period 
and the number of failures is calculated from this quantity.  
 

Incorrect findings 
The prerequisite is, of course, that all failures of this production quantity have been 
recorded and that there are not incorrect findings. Incorrect findings relate to 
components that are removed and replaced due to a malfunction but were not the 
cause of the problem. These parts are not defective and therefore also did not fail. For 
this reason they must be excluded from the analysis. Added to this, it is also important 
to take into account the life characteristic. Components that have been damaged due 
to other influences (due to an accident) for example) should not be included in the 
analysis. Damage analysis must therefore always be performed prior to the actual 
data analysis.  
 

Multiple complaints 
Parts already replaced in a vehicle must also be taken into account. If a replaced 
component is renewed, it will have a shorter operating performance rating in the 
vehicle than indicated by the kilometre reading (milometer). An indication that 
components have already been replaced are vehicle identification numbers occurring 
in double or several times in the list of problem vehicles. The differences in the 
kilometre readings (mileage) should then be used for the evaluation (please refer to 
Repeatedly failed components). 

Step 1: Determining the failure frequencies 

By sorting all defective parts in ascending order according to their life characteristic, 
the corresponding failure probability H can already be determined in very simple form 
with the following approximation formula: 

%100
4.0

3.0





n

i
H  

and if there are several failures classified: 

%100
4.0

3.0






n

G
H i

 

were 
i    :  Ordinal for sorted defective parts 
Gi  :  Cumulative number of cases 
n   :  Reference quantity, e.g. production quantity 

 

For n  50 one counts often also on the easy formula: 

%100
1


n

i
H    

or using the classified version: 

  %100
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n
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The exact cumulative frequencies H (also termed median ranks) are determined with 
the aid of the binomial distribution: 

 
 







n

ik

knk HH
knk

n
1

!!

!
50,0  

This equation, however, cannot be transposed to equal H and must therefore be solved 
iteratively. Nonetheless, the above approximation formula is completely adequate for 
practical applications.  

Once H (for the Y-axis) has been determined for each value, it is possible to draw the 
Weibull plot with the failure distances (in this case, 1000, 2000, 3000, 4000 and 
5000 km): 

                   
 

Step 2: The Weibull function and determining the parameters 

In the classic interpretation, Weibull parameters are derived by calculating the best-
fitting straight line on the linearised Weibull probability graph  /1/. 
The points for the best-fitting straight line are determined by transposition of the 2-
parameter Weibull function: 
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A best-fitting straight line is generally described by:  

Y = b X + a 

Referred to our linearisation this corresponds to: 

)ln(TbXbY   

b therefore represents both the slope of the best-fitting straight line as well as the shape 
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parameter in the Weibull plot. b and a are generally determined using the known 
method of the smallest error squares and the above values X and Y. T is then derived 
from the point of intersection of the best-fitting straight line through the Y-axis, where: 

      a = -bln(T)     

and resolved to  

     b

a

eT


  

In the literature it is often recommended to perform the linear regression through X and 
Y instead of from Y and X. The frequency calculation is less susceptible to errors than 
the running time data. It therefore makes sense to minimise the error squares in X-
direction and not in Y-direction (least square method). The formulation is then: 

)ln(
11

T
b

X
b

Y   

In practical applications, the differences are negligible referred to b. 

In practical applications, b and T are often calculated using Gumbel method /4/ where 
the points on the Weibull plot are weighted differently:  

log

557.0
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/2507,0/)log(
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were  
slog  =  logarithmic standard deviation 
 
The Gumbel method produces greater values for b than those derived using the 
standard method. This should be taken into account when interpreting the results. 
A further method of determining b and T is the Maximum Likelihood estimation 
(maximum probability) /5/, resulting in the following relationship for Weibull analysis:  
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It is assumed that all fault cases correspond to the failure criterion in question. This 
relationship must be resolved iteratively in order to ascertain b. T can be calculated 
directly once b has been determined:  

T t
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A further important method is the so-called Moment Method and in particular the 
vertical moment method. In the corresponding deduction from Weibull, published in 
/11/, the parameters T and b are determined by:  
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This method has the advantage that the computational intricacy  and time are relatively 
low and need not be resolved iteratively as the maximum likelihood method.  
By way of example, the corresponding parameters are to be compared for the values 
1000, 2000, 3000, 4000 and 5000.  
 

 
 
 
 
 
 
 

 
 

 
In this case, the maximum likelihood method produces the steepest slope while the 
best-fitting line method results in the shallowest gradient. In the following analysis 
methods considerations are conducted based on the best-fitting straight line, 
considered to be the standard.  
 

Step 3: Interpretation of results 

In view of the often very pronounced dispersion or scatter of the life characteristic, it 
soon becomes apparent that there is little point in specifying the means of the "running 
time“. An adequate deduction regarding the failure characteristics of the component in 
question can be achieved only with the Weibull evaluation. Instead of the mean, the 
characteristic life T, at which 63.2% of the components fail, is specified. It is optionally 
indicated with the corresponding perpendicular in the graph.  
  

Method b T 

Best-fitting straight line 1,624 3524 

Gumbel 2,018 3468 

Maximum likelihood 2,294 3394 

Moment method (vertical) 1,871 3281 
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A further important variable is the shape parameter b which is nothing else than the 
slope of the straight line in the Weibull net. General one can say: 
 
b  < 1   Early-type failures (premature failures,) 

e.g. due to production/ assembly faults  
 

b  = 1   Chance-type failures (random failures)  
there is a constant failure rate and there is no connection to the actual life 
characteristic (stochastic fault), e.g., electronic components 
 

b > 1.. 4   Time depending (aging effect)  
failures within the design period,  

e.g. ball bearings b  2, roller bearings b  1.5 

corrosion, erosion b  3 – 4, rubber belt b  2.5 
b > 4 : sometimes called belated failures e.g. stress corrosion, brittle 
materials such as ceramics, certain types of erosion 
 

The following steps represent special cases:  
 
b = 1    Corresponds to an Exponential distribution 

           Constant failure rate  
 
b = 2    Corresponds to Rayleigh distribution, linear increase in failure rate 
 
b = 3.2..3.6    Corresponds to Normal distribution 
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Here, the term early failure (b<1) is ambiguous as it is also possible that a wear 
characteristic only becomes apparent through a production fault (e.g. excessively high 
roughness values of a bearing assembly). Despite b>2, there may also be "premature 
failures" in this case as the damage already occurs after a very short period of time. 
Wherever possible, the terms and definitions should therefore be used in context. It is 
essentially possible to state that there is no dependency on running time at values of 

b  1.  
 
In practical applications it is often the case that the failure data is based on a mixed 
distribution. This means that, after a certain "running time“, there is a pronounced 
change in the fault increase rate due to the fact that the service life is subject to different 
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influencing variables after a defined period of time. The various sections should 
therefore be observed separately and it may prove advantageous to connect the 
individual points (failures) on the graph instead of one complete best-fitting straight line 
(refer to section entitled Mixed distribution). 
 
It is desirable to have available a prediction of the reliability of a component before it 
goes into series production. Fatigue endurance tests and simulation tests are 
conducted under laboratory conditions in order to obtain this prediction. For time 
reasons these components are subjected to increased stress load (often also due to 
safety factor reasons e.g. factor 2..3) in order to achieve a time-laps effect. Entering 
these service life characteristics in the Weibull plot will result in a shift in the best-
fitting straight line to the left compared to a test line, for which a normal stress load 
was used. This is to be expected as components subjected to higher loads will fail 
earlier. However, if the progression of these best-fitting straight lines is not parallel, 
but increase at a different rate, this indicates a variety of failure mechanisms in 
relation to the test and real applications. The test is therefore not suitable.  

Confidence bounds   

The Weibull evaluation is based on what may be viewed as a random sample. This in 
turn means that the straight line on the Weibull plot only represents the random sample. 
The more parts are tested or evaluated, the more the "points" will scatter or disperse 
about the Weibull straight line. It is possible to make a statistical estimation as to the 
range of the populations. A so-called "confidence bound" is introduced for this purpose. 
These bounds are generally defined through the confidence level, mostly at PA=90%. 
This means the upper confidence limit is at 95% and the lower at 5%. The following 
example shows the two limit or bound lines within which 90% of the population is 
located.  
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this case PA=0.05 is used for the 5% confidence bound and PA=0.95 for the 95% 
confidence bound:  
 
H represents the required values of the confidence bound. However, the problem in 
this  
 
case is also that this formula cannot be resolved analytically for H. 
It is also possible to calculate the confidence bound using the Beta distribution with the 
corresponding density function, represented vertically, using the rank numbers as 
parameters. More commonly, tabular values are available for the F-distribution. By way 
of transformation, the confidence bound can be determined using this distribution.  
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The progression of the confidence limits moves more or less apart in the lower and 
upper range. This indicates that the deductions relating to the failure points in these 
ranges are less accurate than in the mid-upper section.  
In the same way as the best-fitting straight line, the confidence bound must not be 
extended substantially beyond the points. 
Reference is made in particular to /1/ for more detailed descriptions.  

The confidence bound of the slope b 

There is an approximation 
formula especially for the 
confidence interval of the 
parameter b: 
  
 
 
 
 
Relation for other confi-
dence levels  
 

 
 
The confidence bound of b 
is used, among other 
things, to decide on a mixed 
distribution.   

The confidence bound of the characteristic life 

The following relationship with using the ²-distribution is recommended for the 
characteristic lifetime T: 
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 Excel-Formula for 2-distribution  
 =CHIQU.INV( 0,05; 2*n )   and 
 =CHIQU.INV( 0,95; 2*n )  
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Confidence-level 90%    α = 10%  
 

Also, here this confidence bounds are used, among other things, to decide on a mixed 
distribution.   
 
T can be exchanged with t10 to get the limit for an t10 requirement. 
 

The 3-parametric Weibull distribution with to 

A component requires a certain period of time before wear occurs, for example brake 
pad 
wear. This time is called a failure-free time. 
 

There is no distinct mathematical formula for this 
purpose. A fundamental requirement in connection with 
the failure-free period to is that it must lie between 0 and 
the value of the first failed part. to usually occurs very 
close before the value of the first failure. The following 
method suggests itself: to p asses through the intervals 
Interval between t>0 and the first failure tmin in small 
steps and the correlation coefficient of the best-fitting 
straight line. is calculated at each step. The better the 
value of the coefficient of correlation, the more exact the 
points lie on a straight line in the Weibull plot. to is then 
the point at which the value is at 
its highest and therefore permits 
a good approximation with the 
best-fitting line.  
 

In graphic terms, this means 
nothing else than that the points 
in the Weibull plot are applied 
shifted to the left by the amount 
to, see graph in the right:  
 
The points then result in the 
best linearity. This is due to the 
fact that due to the logarithmic 
X-axis, the front section is 
stretched longer than the rear 
section, thus cancelling out the 
curvature of the points to the 
right.  
 
 
It is, of course, possible to test statistically the coefficient of correlation of the best-
fitting straight line with to using the relevant methods /2/, establishing whether the 
failure-free time is applicable or not (F-test for testing the linearity or t-test for the 
comparison of the regressions with and without to). In view of the numerous possible 
causes of the curved line progression, a statistically exact hypothesis test is not 
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worthwhile in the majority of practical applications. However, the method just described 
should be used to check whether the correlation coefficient of the best-fitting straight 

line with to lies at r  0.95.  
A mixed distribution is very probably if, instead of the slightly rounded off progression 
as previously described, a significant kink to the right can be seen at only one point 
with otherwise different straight line progressions. The same applies particularly to a 
kink to the left, in connection with which there is no possibility of a failure-free time to 
(with the exception of defective parts with negative to). Please refer to the section 
entitled Mixed distribution. 
Note: 
The shift of the points by to is not represented in the Weibull plot but rather implemented 
only by way of calculation. 
 

 
Example of wear-affected component where to is very much depending on the 1st 
point. This is often an outlier, e.g. a process- or manufacturing problem!: 
 

 
Other non-linear Weibull-Functions  

Often there are non linear Weibull-distributions, which can not be satisfying described 
with the 3-parametric function with to. In particular the course for a very long-life span 
flattens steadily. This is the case if the failure-probability decreases by other 
connections than the normal failure cause (like fatigue, aging etc.). The reason is the 
often the death rate because of accidents. On this consideration, the bend is relatively 
steady in the Weibull diagramme for the time, almost constant. With the standard 3-
parametrig Weibull function with to at the beginning the bend is high and later runs out. 
A function or an extension of the Weibull function with the following attributes is 
searched: 
 

-  Curve progression with very steady bend.  
-  Representation possible convex or concave 
 

These requirements can be realised with the following term in the exponent from b: 
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The parameter k shows the strength of the bend. If this is positive, a decreasing 
gradient b arises. If it is negative, there originates an increasing gradient. The following 
example shows for k =-0,05 and k=0,05 the courses: 
 

 
 
At the start with t=1 is the correction=1. The gradient is here the original one. The 
interpretation with regard to b refers to the beginning, while ascertained b is to be 
interpreted for 3-parametrige Weibull function approximately on the right outlet of the 
curve. The Weibull function with correction factor dependents on time, b becomes 
therefore to:  

)ln(1

1

tk

b

T

t

eH











  

 
The logarithm ensures that at high running time the correction grows not excessively. 
With concave course with negative k the denominator 1+k ln(t) can not be less or equal 
0. In addition, it can happen that this enlarged Weibull function goes more than 100%. 
Both show an inadmissible range. This extension (correction) is not based on 
derivation of certain circumstances, like the death rate. Hereby merely one function 
should be made available for concave or convex curve courses with which one can 
better describe the course of a non-linear Weibull curve. The measure of the goodness 
of this function is the correlation coefficient r. The higher this is, one can use better this 
new Weibull function also for extrapolating at higher times than data points exist. 
Example for a degressive Weibull - curve: 
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The parameter k must be determined iteratively. As the first estimate for the start of the 
iteration can be determined b from straight regression. Also, the characteristic lifetime 
T.  
 
Another beginning is the use of an exponential function for a non-linear curve. 

XeY  '
 

With this beginning can be illustrated non-linear courses, in particular roughly steadily 
stooped, ideally. However, this function is bent first on the left instead of on the right. 
Therefore, the transformation occurs more favourably points with:  
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(see chapter Determination of the Weibull parameters)  

With the Offset = Y[na]+1  for the last point of failure. Herewith one reaches that the 
points are reflected round the X axis and the function is bent on the right. If one uses 
now X and Y‘ in the exponential function, thus originates, in the end  
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If one combines the exponent to x, this new equation relates to the in professional 
circles well known extreme value distribution type 1 from Gumbel: 
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The suitable inverse function of the new exponential form is: 
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With this equation, it is possible for example, to calculate the t10-value (B10). 
The following example shows the differences compared with a concrete failure 
behaviour: 
 

 
The classical straight line shows the worst approxiamtion of the failure points, in 
particular up to 10,000 km. The 3-parametric Weibull distribution with to is better quite 
clearly, however, shows in the outlet of the last failure points still too big divergences. 
A statement about the failure likelyhood, e.g., with 100,000 km would deliver too high 
values. In this case approx. 45% of failures should be expected. However, these have 
not appeared later. 
Only the exponential beginning was satisfactory. The result became even better if one 
used only the rear upper points (approx. 2/3 of the whole number) for the fitting of the 
Weibull function. Premature failures in the quite front area have been already taken 
out of the representation (process failures). 
The Weibull-exponential function shows no typical down-time to T or gradient b it would 

be to be interpreted. ,  and  are suitable only to form and situation parametre of this 

function. An enlargement from  shifts the curve to the right. This is comparable with 

the behaviour if T is increased in 2-parametrigen Weibull function. Indeed, also shift  

and  the curve. An enlargement of the respective values proves here a link movement, 
and the course is bent, in addition, more precipitously and stronger. 
Which approach has to be selected finally? The adaptation of the generated curve to 
the failure points is judged at first optically. If the steadily stooped course fits to the 
points, one decides with the help of the correlation coefficient from the method of the 
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least square fit between 3-parametrig Weibull distribution or the exponential function. 
The closer the correlation coefficient lies to 1, the better the function is suitable. For 
the adaptation of the function to concrete failure points it may be suitable to let out 
early failures or extreme points. 
 
Both shown approaches are recommended if the failure points in the middle range are 
steadily and convex. If there are mixed distributions the method of splitting in several 
divisions is recommended. 
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Other characteristic variables 

Failure rate 

The failure rate indicates the relative amount of units that fail in the next interval (t+dt). 
It is a relative parameter and should not be confused with the absolute failure quota. 
Since the remaining number of decreases in time the absolute failures will also 
decrease at a constant failure rate.  
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A constant failure rate is often encountered in the electrical industry. The graphic 
representation of different failure rates is often referred to as a bathtub life curve: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
Each of the three ranges are based on different causes of failure. Correspondingly 
different measures are necessary to improve the reliability.  
Further details can be found in the section Interpretation of results. 

 

Expected value (mean) 

The mean tm of the Weibull distribution is rarely used.  
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In the literature the expected value is described as  

 MTTF (Mean Time To Failure) for non-repaired units 
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For a constant failure rate with b=1, the expectancy value MTTF  is derived from the 

reciprocal of the parameter  (MTTF=1/) . This is not generally valid for the Weibull 
distribution.  

Standard deviation 

The standard deviation of the Weibull distribution is also obtained with the aid of the 
gamma function:  
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Variance 

Corresponding to the standard deviation the formula is: 


















 






  
2

22 1
1

2
1

bb
T    

















 






  
2

22 1
1

2
1

bb
tT o  

2-parameter    3-parameter 

 
Availability 

The availability or permanent availability is the probability of a component to be in an 
operable state at a given point in time t. The permanent availability of a component is 
determined by: 

MTTRMTTF

MTTF
AD 

  

with the expectancy value MTTF already defined and the mean failure or repair time 
MTTR (Mean Time to Repair). The unit of MTTR must be the same as for MTTF. If, for 
example, the MTTF is defined in kilometres, the time specification for MTTR must be 
converted to the equivalent in kilometres. It is necessary to define an average speed 
for this purpose.  
 
It is possible to determine the system availability using Boolean operations (please 
refer to the section headed Overall availability of systems). 

t10-Lifetime 

The lifetime, up to which 10% of the units fail (or 90% of the units survive); this 
lifetime is referred to in the literature as the reliable or nominal life B10. 
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4. Comparison of 2 distributions 

The question discussed here is: Is one design, system or component more reliable 
than another. For example, has the introduction of an improvement measure verifiably 
extended the service life. The differences can be quantified by the characteristic life T 

-> 21 /TT .  

Statistical tests define a so-called null hypothesis: 
 Null hypothesis: The distributions are identical.  
 Alternative hypothesis: The distributions are different. 
 
Note: Although the question is usually to look for a difference, one must define the null 
hypothesis and the goal is to reject it. The question is whether differences are 
significant or cased by random. To answer the hypotheses, the following method can 
be used: 
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      Define the confidence bounds 

      Standard = 90%   =  10% 
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 Step 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example of a field warranty problem: 
 

 
 
In this example, the individual characteristic lifetimes overshoot the confidence bound 
of the overall straight line.  
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5. Mixed distribution 

In connection with different failure mechanisms it is possible that the progression of 
the Weibull plot is not a straight line but rather a curve. If it is possible to attribute the 
reason for the component failure to different reasons, the corresponding "fault groups” 
are evaluated separately in the Weibull plot. The following formula applies to two 
different Weibull distributions: 
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If evaluation of the component failures is not possible, distinct confirmation of a mixed 
distribution may be determined only with difficulty as the individual points are always 
scattered or dispersed about the best-fitting straight line.  
 
As in virtually all statistical tests, the question arises as to whether the deviations of 
the failure points are coincidental or systematic. The following procedure is used: 2 
best-fitting lines are determined from the points in the initial section and from the points 
in the rear section, starting with the first 3 points, i.e. if an evaluation has 10 failures, 
the rear section contains the last 7 points. 
 

    
 
In the next step, the first 4 points and the last 6 points are combined and so on. This 
procedure is continued until the second section contains only 3 points. The correlation 
coefficients of the respective sections are then compared and the possible "separating 
point" determined, at which the correlation coefficient of both best-fitting straight lines 
are the best. All that is necessary now is to perform a test to determine whether both 
sections represent the progression of the failures better than a best-fitting straight line 
over all points together. Different options are available for this purpose. In the same 
way as the comparison of two distributions, it is useful to examine the two slopes up to 
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the confidence bound of the slope of the overall straight line. Please refer to section 
"The confidence bound of the slope b”. 

 

The hypothesis that there is a mixed distribution can be confirmed if the flatter slope of 
both subsections lies below the lower confidence bound and/or the steeper slope 
above the upper confidence bound. 
 
Example  

Although, strictly speaking, the procedures described above apply as from a random 

sample quantity of n50, to simplify the explanation, the following example deals with 
10 failures. The following operational distances (mileage) were recorded up to the point 
of failure: 1200, 2500, 3400, 4200, 5000, 6200, 6800, 7400, 8600, 9600 km. The 
method just described produces a separation of both sections between points 5 and 6, 
see diagram. The slope of the first section is calculated at 1.5 while that of the second 
section is 2.7. In accordance with the relationship presented at the beginning, the 

confidence bound of the slope for the entire range at = 90% extends over 
1.03<btotal<2.43. The slope of section 2 therefore exceeds the confidence bound in the 
upward range and the hypothesis of a mixed distribution can be confirmed. 
Nevertheless, the result is tight. If the last failure point were set to 10200 km instead 
of 9600 km the confidence bound would no longer be exceeded. 
 

 
 
There are, however, mixed distributions in which the slopes of both sections lie very 
close together but offset: 
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The test used to date would possibly not detect a mixed distribution although the overall 
slope over all points is not as steep as the individual sections. The concrete example 
of the above distribution of a starter, however, had definitively different failure causes. 
In this case, it is advisable to additionally check the respective characteristic life T in 
terms of the confidence bound of the overall straight line. This can be achieved by the 
following approximation formula: 

 

The hypothesis that a mixed distribution exists applies also in this case when the two T 
of the subsections transgress the confidence bound of the overall best-fitting straight 
line at one of the two sides. 
 
The alternative hypothesis that there is no mixed distribution is not permitted with this 
method as there are also other reasons for a curved progression. For example, it is 
possible that a progression kinked to the right may represent a failure-free time to or 
the data run out (please refer to chapter "Prognosis"). In addition, it is also not 
fundamentally possible to assume that the two distributions extend over different 
distance ranges. "Interlocked" distributions cannot be detected.  
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6. Test for Weibull distribution 

Generally, data can be checked to establish whether they obey a certain type of 
distribution. In the case of the Weibull distribution, it should be borne in mind that it is 
a universal distribution that contains other distributions (e.g. lognormal distribution).  
As part of the Kolmogorov-Smirnov test, the available data are compared (empirically) 
to the Weibull distribution function. The parameters b, T and possibly to of this function, 
however, are estimated from the available data (see section entitled "Determining 
Weibull parameters).  
If, instead of the random variables T with the function:  
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is taken into consideration, the resulting exponential distribution is: 
XeH 1  

 
Based on this consideration, the Kolmogorov-Smirnov test (KS-Test) can be applied 
for the exponential distribution with an unknown parameter. The function checks 
whether thy hypothetical distribution function H(X) corresponds to the actual distribution. 
The null hypothesis is: 
 
     Ho: The distribution is a Weibull distribution 
 
The deviation is compared with respect to the frequencies of the sorted data (ranking i). 

H=i/(n+1) applies for n  50. Since the empirical data represent a "step function", in 
addition to the position i, the deviation at the previous position i-1 must be checked 
compared to the function value Hi. 
The hypothesis is not rejected if a maximum distance D between the empirical 
frequency and the Weibull function is not exceeded.  
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The critical values for D from conventional tables are suitable only when the parameter 
of the exponential distribution is known. While using Monte Carlo methods, Lilliefors 
/16/ determines critical values for the case that the parameter must be estimated from 
the random sample. The advantage of the KS test is that it can also be applied to small 
random samples. However, complete samples are assumed.  
Example: The following failure data are available where to = 0. The Weibull parameters 
were determined using the best-fitting straight-line method and are T=56.45 and b=1.4. 
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i t 
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
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 at i  at i-1 

1 13 0.10938 0.12050 0.011 0.121 

2 24 0.26563 0.26108 0.005 0.152 

3 31 0.42188 0.35127 0.071 0.086 

4 55 0.57813 0.61885 0.041 0.197 

5 78 0.73438 0.79238 0.058 0.214 

6 91 0.89063 0.85774 0.033 0.123 

 

Dmax is therefore 0.214. According to the table (see annex) the critical value for a 

significance level of  = 5% is KS crit 6.5% = 0.408. The hypothesis that the distribution is 
a Weibull distribution is confirmed as Dmax < KS crit 6.5%.  
The possible causes must be determined if there is no Weibull distribution. The 
representation of the failure frequencies in the Weibull plot is therefore not incorrect, 
however, it must not be inferred to other failure values with the determined parameters 
or extrapolated.  
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7. Monte Carlo Simulation 

A data record can be created for certain defined Weibull parameters using the so called 
Monte Carlo simulation. The frequency H is determined by means of a random 
generator conforming to the requirement: 0<H<1. However, the maximum frequency 
can be further restricted by sorting out the parameters outside the required range. The 
corresponding running times are then calculated with the inverse function: 
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The Weibull parameters derived from the data record have a more or less large  
 

 
 
 
deviation with respect to the specified b and T. It is advisable to generate a relatively 
large number of points and to then subsequently classify these data (depending on the 

required number of data items). Example: A Weibull curve is to be generated with b2 

and T1000 as well as 500 data items. One sweep with classification results in e.g.  
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8. Reliability of the System 

As a rule, the various components that make up a system have different failure rates. 
The overall reliability is generally defined as the "boundary line" of the individual 
components: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the illustrated example, component C has a failure-free time. The component B 
dominates at the beginning, however, component A is decisive in the latter stages. 
Component B is to be improved accordingly for the purpose of improving the initial 
situation (warranty period). Component A is decisive for the further reliability over 
10000 km. 
The overall system is therefore characterised by its weakest components. 
Corresponding to the "Pareto principle" it is necessary to concentrate on these 
components. Once the components in question have been decidedly improved, 
emphasis is shifted to the next weakest component. From an economics point of view 
the cost-benefit ratio is, of course, an additional authoritative factor.  
 
In addition to these fundamental considerations, from a mathematical point of view, the 
overall reliability including several components or parts is derived as a function of the 
corresponding interaction of these components.  
If the components are "configured in series", i.e. the functional chain) extends from one 
component into the next, the corresponding probability of survival Rtotal is derived from 
the multiplication of the individual probabilities of survival: 
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The system reliability is always poorer than the poorest individual component. The 
system reliability is reduced by each additional component. If a component fails, it 
immediately affects the entire system and the components need not necessarily be 
technically linked with each other. For example, a vehicle fails when either a tyre no 
longer has any air in it or when the engine fails. The serial configuration is therefore 
the basis for calculating the overall reliability. Since there is the relationship H = 1 – R 
between the probability of survival R and the failure probability H, the following formula 
applies: 
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Components "configured in parallel" result in redundancy. 
The overall system fails only when all components have 
failed.  
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and the probability of survival  

 

It is also possible to form combinations of components 
configured in series and parallel. The following probability of 
survival results from two serial "power trains" that are configured in parallel: 
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A system fails when at least one component has failed within both series-connected 
power trains.  
 
The following applies to several parallel circuits that are configured in series one after 
the other: 
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This system fails when both components of a parallel block fail. 
A typical example for series configura-
tions in the following gear mechanism:  
The set up contains only series connec-
tions of up to 3 assemblies. However, 
the overall system can be determined by 
a 2x2 combination. 
 

 
 
 
 
 
 
 
 
Example of a planetary gear: Here, the illustrated components can be considered 
as subgroups that are defined in stages.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
R1= 0.85 
R2=R3=R4 = 0.90 
R5 = 0.80 
 
R*   = 1 – (1 - z2) (1 - z3) (1 - z4) 
       = 1 – (1- 0.9) (1- 0.9) (1- 0.9) 
       = 0.999 
Rtotal = R1· R* · R5 

        = 0.85 · 0.999 · 0.8 
        = 0.679 
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Example of power supply 

It is necessary to reliably supply one or several critical loads with power. Considera-
tions: The auxiliary battery 2 is to provide backup in the event of the main battery 1 
failing. A switch is to prevent battery 2 supplying the normal loads with power under 
certain conditions.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
What does the block diagram for the availability of the critical loads look like?  
What does the block diagram for critical loads relevant to safety look like with battery 
monitor and indicator? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It may be possible that the same element occurs several times, e.g. because a sensor 
supplies information for various evaluator units.  
The block diagram should not be confused with the actual current flow in a circuit but 
rather should always be considered in terms of the availability or reliability of the 
components.  
 

The greatest problem is obtaining the reliability figures of the individual components.  

G 

Bat 1 Bat 2 

Crit. load 

Switch 

Motor, Light... 

Alternator 

Battery 2 

Battery 1 Switch 

Battery 2 

Battery 1 Switch 

Batt. monitor Indicator 

Block diagram for  
system availability 

Block diagram for  
safety equipment 
 
With battery monitor  
and indicator.  
Alternator alone is not  
sufficient for supplying  
critical loads with power. 
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9. Fault Tree Analysis 

The Fault Tree Analysis, briefly FTA, was developed originally in the sixties in the area 
of the American telecommunication industry and aircraft industry. Only in the beginning 
of the eighties a formalization of these methods occurred at the instigation of American 
authorities. 

The Fault Tree Analysis is used for reliability- and safety security analyses. The pro-
ceeding is very similar to the Reliability Block Diagram RBD. 

The aim is to determine possible combinations of causes which can lead to certain 
undesirable events (event), the so-called top-level events.  

The goal is to identify possible combinations of causes that can lead to certain adverse 
events, the so-called top-level events. Furthermore, the task of an FTA is: 

 The generation of a graphic / logical tree structure to the understanding of the 
connections.  

 Identification of possible failure causes and their combinations.  

 Calculation of the probability of the undesirable event. Comparison of 
variations. 

 Comparison of variants 

 

The link of the events is made in each case by different logical operators, the so-called 
gates. Device faults, operating faults and software faults which can cause with a 
certain probability to undesirable results belong to the events among other things.  
 
The following symbolism is used to the representation of the fault tree: 
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Symbolic 

 

 
& 

AND-Gate 
The output event enters only if all input events apply. The 
output probability P is calculated with: 
 
 

 

 
≥1 

OR-Gate 
The output event enters if one of the input events applies. 
The output probability P is calculated with: 
 
 

 
 
 
 
 
 

≥2 Vote-Gate 

The output event occurs when at least two input events 
occur. At least 3 inputs are required for this. 

 

=1 XOR-Gate (Exclusive-OR) 

The output event enters if only one of the input events apply 
but not both. 
The output probability P is calculated with: 
 

 

 Basic-Event 

Primary base event or failure. The probability P is defined 
directly and mostly comes from manufacturer's data of the 
component. As with the reliability block diagram P is 
dependent on the time (component age). 

 

 Sub-Gate 
At this point the other representation is interrupted. The 
given probability P represents the summary of other sub-
elements which are not shown further. 
 

 

 Neutral text element 

Text elements can be inserted in paths to show additional 
information, or to insert other "creases". At several 
entrances this element works like an OR gate. 

 

Hint: The symbolism is according to country and standards, 
as well as in software partly differently.  
The exit from P can be negated (example on the left). Then 
P describes the probability that the event does not enter. 
This is marked by a symbol of a circle at the entrance of the 
following gate.  
The input probability of the following gate is: P1=1-P.  
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The advantage of the FTA is the hierarchical tree structure. In the upper area you can 
find the basic connections in the coarser area, in the lower area you can find the details. 
The FTA thus also provides good documentation of the relationships, even if the 
probabilities are not specified (qualitative fault tree). 
 

There must be no opposing influences in the FTA, the elements must be independent 
of one another. 
 

The fault tree starts at the top with the Top Event. At the bottom, the event paths are 
broken down further and further until one arrives at the Basic Events, or at the Sub-
Gates, for which the further details are not detailed. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this example, the system is initially divided into its properties (strength) and what it 
experiences (load). This is followed by the relevant connections and, at the end, the 
actual causes (basic events). 
 

In addition to the example shown, the FTA is particularly suitable for the electrical / 
electronic area or for control and regulation systems. The FTA is not the right tool for 
just looking at software.  
 

In the comparison no probability is treated moreover in a causes-effect diagram. One 
looks only at the "critical" moment when the fault occurs as a top event.  
 
Calculation via so called Cut Set 

If Basic Events or Sub-Gates have an influence on several gates, a calculation starting 
from the base event will give incorrect results for the top event. The following example 
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tree with calculated probabilities 
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shows such a situation in which event E3 has an influence both in gate C and in gate 
D (e.g. a temperature could affect several paths): 
 

 
 
The calculation according to the algorithm of J.B. Fussell takes place step by step in 
tabular form until only Basic Events or Sub-Gates remain. 
 
The complete production of the fault tree assumes that 
one can name all components and conditions. This is not 
always given under circumstances if, e.g., a failure 
appears as only temporary and is not known what 
condition must be still given here. This can be avoided 
first by a "place holder" who is to be determined later 
 
 
 
 
 

Comparison with a Reliability-Block-Diagram (RBD)  

As at the beginning described, the comparison with the reliability block diagram should 
be still shown (Reliability-block diagram = RBD). 
Conspicuously is that here no gates are shown, but only the suitable components 
which are the base events in the FTA. 
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     Fault - Tree      Reliability Block Diagram 
 
While in the FTA a redundancy is shown merely as AND link, this seems more striking 
in the RBD by the parallel arrangement. The difference between OR / AND link is 
stronger emphasised here graphically. The advantage is also that here less elements 
are needed. However, the disadvantage of the RBD is that none Exclusive OR-links 
are possible. 
 
With the treatment of a problem, the comparison with a cause-effect-diagram is also 
looked often. If there are "conditions" or components which are not known yet, exists 
in the FTA the problem to name this. Here as a rule, one places pseudo-elements 
which are to be determined even closer. In the cause-effect-diagram one is led there 
about the physical / technical active chain rather on the still missing connections. 
Further details to active diagram are described under: 
 
www.weibull.de/COM/Systemanalysis.pdf. 
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10. Reliability Growth Management (Crow AMSAA) 

One understands by a Reliability Growth Management the improvement steps within 
the development of components. While component variations are not allowed in the 
Weibull analysis, a change of the test objects is possible here. Besides this, a small 
sample size and different failure modes can be shown together. Often it is the purpose 
to identify the developing progress and to make a forecast. 
 
The Reliability Growth Management was developed in the 60s by Duane by General 
Electric Motors Division for military systems. An essential improvement and extension 
of the Duane proposal was developed by L.H.Crow at the U.S. Army Material System 
Analysis Activity (famously better known as Crow-AMSAA model). 
 
The connection between accumulated test duration t and the accumulated failures  
N(t)  is: 

 tN t )(  

with     = shape parameter (not to mistake with same name in the chapter failure rate) 

            = slope parameter (not to mistake with the Weibull-slope parameter) 

 
In a double-logarithmic diagram there can be created a straight line with the slope 
. The mean failure rate is: 

1

)(

  tt  

The mean time between failures MTBF is calculated with: 




 11

tMTBF  

Here it was indicated, that if the form parameter or the slope is β ≠ 1, it concerns to a 
non homogenous Poisson process (NHPP). That means if β > 1 there rises the failure 
rate or the failures come earlier and if   β <1, then there decrease the failure rate and 
the failures come slowly. For the case, that the form parameter is β = 1, one say it is 
a homogeneous Poisson process. In the development phase there should be the 
slope β <1, which is an indicator for reliability growth. 
 
The best known methods to determine the parameters are: 
 

1. Least square estimation (regression analysis) 
2. Maximum Likelihood estimation (MLE, or MIL-HDBK-189)  
3. Power Law (NHPP or unbiased MLE) 

 

For the least square estimation, the cumulated test times and the cumulated number 
of failures have to be used as logarithm values. Then the standard method least 
square has to be applied. The least square estimation is suggested for small sample 
sizes less then 5. 
 

The parameter λ and β are determined with the method Maximum Likelihood 
through the following formulas: 
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Type-I  (after a defined  test time the test is finished) 
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where is  T = defined total test time. 

 

Type-II  (after a defined number of failures the test is finishes)   
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For the Power Law Model  (NHPP described in IEC 61164) there has to be used the 
following formulas: 
 
Type-I  (time truncated) 
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T  = defined total test time ,  ti  cumulated test time for each failure  
 

 
 
Type-II  (failure truncated)   
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n
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
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nT

n
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Tn = total test time with defined number of failures,  ti cumulated test time for each  failure  

 

The least square estimation does not make a distinction between type I and type II.  
As best estimation the power law model is often regarded. 
 
For example there are the following test times: 
 

N test time t cumulated T MTBF 

1 50 50 50,0 

2 220 270 135,0 

3 230 500 166,7 

4 300 800 200,0 

5 360 1160 232,0 

6 410 1570 261,7 

7 450 2020 288,6 

8 540 2560 320,0 

9 650 3210 356,7 

 
After the 3 methods the can be compared MTBF and N(t) in logarithmic axes: 
 
Type-I  (time truncated) 

MTBF is calculated through: 

 

MTBF = T /N 
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Type-II  (failure truncated)   

 

 
 
In the comparison the methods for type I give relatively great differences. Typically the 
Maximum Likelihood method lies farthest away from the points. For type II the power 
law model approaches to the least square estimation well. Depending on the position 
of the right points it is recommended to extrapolate with the power law model or the 
straight line. 
 

The confidence area for MTBF can be calculated with the ²-distribution: 
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Accordingly a confidence area is given for the cumulative number of failures with: 
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Both formulas concerns to the least-square method. 
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11. Service life prognosis from degree of wear 

There is often not enough time to wait for a component to fail. If it is possible to measure 
the "degree of damage“, there is a chance to extrapolate to the remaining service life. 
Assuming the wear is proportional to the distance covered (mileage), it is possible to 
use a rule of three to make a projection. 

1

1 tD
D

t
t rest 


 

where  t :  Expected service life  

  t1 :  Moment at which the degree of wear was measured 

  D  :  Degree of wear, e.g. brake pad thickness when new – remaining brake pad thickness 
  Drest :  Remaining brake pad thickness available  
 
The calculated service life values t can be represented in the Weibull plot. In many 
cases, a linear wear characteristic cannot be assumed. Initially, the progression should 
be represented as a function of time from the observed wear values and a suitable 
functional approach selected (e.g. e-function). 
 
Example: A new pump was tested as part of large-scale trials. 47 vehicles were 
equipped with the pump. A deduction with regard to the expected service life was to 
be made after a defined period of time. The precondition was that the pumps covered 
a most diverse range of distances as possible as the initial task is to determine the 
wear as a function of the running time. All pumps were examined. All components that 
determine the service life, i.e. commutator, positive and negative poles (carbon 
elements) were measured with regard to their degree of wear.  
 
 
 
 
 
  
 
 
 
 
 
The effective range of the commutator extended up to a minimum diameter of 
13.4 mm. The positive and negative carbon brushes were worn when a residual 
thickness of 0 was reached. Evaluation of the measurements resulted in the following 
representation as a function of distance (mileage): 
 

Wear 

Carbon brush 

                     

Commutator 

Wear 
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Despite the large scatter or dispersion range, a non-linear relationship can be clearly 
seen. This means the wear is digressive over distance. This is attributed to the fact 
that the spring force and therefore the contact force of the positive and negative carbon 
brush on the commutator decreases with wear. Using a suitable functional approach, 
attempts were now made to conclude the projected service life. The function  

'

'
'

cx

b
aY


   -> 

'

'
'

ct

b
aD


  

proved to be the best approach (see equations above the diagram). Y is the residual 
thickness D and x the distance covered (mileage) t. The "offset“ c’ was defined in terms 
of the lowest km value of 10000 km (vehicle with low mileage).  
 

Using this approach, the progression of the curve is to be determined for each pump 
(the coefficients a’ and b’). The coefficients are determined based on a starting point 
at 0 km and the distance covered by the vehicle (mileage). This gives: 

kmkm

b
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'
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    

In the moment of measuremt, there is: 
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'
'

1
1 
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Dstart is 15.2 mm for the commutator and 7 mm for the positive/negative carbon brushes 
(new condition). These two relationships were now equated and resolved for b  
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kmt
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The required theoretical service life is then calculated for each pump individually 
with the useable min. diameter of Dmin = 13,4mm: 

  
km

aD

b
t 10000

'

'
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



  

 

The service life values projected in this way are transferred to the Weibull plot. From a 
purely mathematical point of view, there are values that will not reach the lower critical 
wear point (x value negative). This means that the end of the service life is beyond the 
service life of the vehicle. These pumps cannot be represented in the plot, however, 
they must be taken into account in the scope of the sample (referred to 47 pumps). 
 

In terms of failure probability, the positive and negative carbon brushes are normally 
included in the system reliability of the pump (block diagram – serial configuration). 
This is represented by:  

KomMinusPlusges RRRR    

or  

)1()1()1(1 KomMinusPlusges HHHH   

However, the resulting service life values for the positive and negative carbon brushes 
were considerably higher than those of the commutator. In simplified terms, the service 
life of the pump could therefore be described with the service life of the commutator 
alone, resulting in: 
 

 
 
As expected for wearing components, this resulted in a failure-free period to. The shape 
parameter b <1, however, signifies early failures. The apparent contradiction is 
attributed to the fact that the critical pumps (only 11 out of 47) are subject to a tolerance 
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or production-related random influence which is of significance in this case. 
 
The result of the investigation found that the new pump is not suitable and the 
production influences are to be examined to determine the reason.  
 

12. Consideration of failures not yet occurred  

Sudden death 

If specimens are removed from a service life test before they have failed, this random 
test will be considered incomplete. In this case, it is clearly incorrect to enter the 
corresponding "running times“ with the ordinal i in precisely the same way as if they 
have failed. Simply omitting them from the entire consideration would mean that 
important information which could have been evaluated is not included. The use of this 
information, indicating that a number of parts has reached a certain service life without 
failing, is referred to as "sudden death testing“). 
In the laboratory it is often possible to test several specimens simultaneously on the 
same test set-up or apparatus. If one of the parts fails, in most cases, the others are 
still in working order. These parts are still included in the subsequent evaluation 
although they are not left to run to the 
end of their service life. Assume, for 
example, that the following tests were 
carried out using 3 specimens at the 
same time, all on the same test set-up 
or apparatus. 
 
The first failure is assigned the rank 
number 1. Although the two parts 
without a failure are not represented 
directly in the subsequent Weibull 
diagram, they will indirectly influence the frequency value of the subsequent failures. 
The rank number 2 is not given to the failure at 14 h but rather a value greater by a 
delta value. This value is calculated using:  
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where nNext is the number of subsequent test specimens. Entering n = 12 results in:  

2,1
91

1112





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and the rank(i) = rank(i-1) +  = 2.2. If the next test specimen also fails, the next rank 
assumes the value of the previous rank plus the currently determined delta. In this 
example, the next failure is at 16 h with the new delta of 

54,1
61

2,2112



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resulting in rank(i) = rank(i-1) +  = 3.74 and so on. 
The associated frequencies are defined by: 

%100
4.0

3.0)(






n

Rank
H

i
 

Running 
time in h 

Number of 
failures 

Number of 
parts without 

failure 

10 1 2 

14 1 2 

16 1 2 

18 1 2 

 



www.weibull.de   53 

results in the following representation: 
 

 
The sudden death method results in a steeper slope than the observation method 
which takes into consideration only the pure failures (with n=12). If, in practical 
applications, all test specimens were subjected to a test individually and the failures 
correspondingly plotted, the result would basically that of the sudden death method. 
The advantage is the considerably shortened test phase.  
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Evaluating data of defective and non-defective parts 

If units have not yet reached a certain running distance, where others have an 
complaint, incomplete data arise like as in Sudden Death, but not necessarily in 
groups. Initially, all running times are sorted one after the other irrespective of whether 
they are defective or not. Example: 

 

Ordinal Distance*1000 Defective Not defective 

 40  x 

 51  x 

1 54 x          xx 

2 55 x  

 59  x 

 60 x           x 

3 60  x 

 61  x 

4 62 x           xx 

 etc.   

 
The non-defective parts are assigned to the next higher or equally high damage case. 
The ordinal refers only to the defective parts. If, at the end, only non-defective parts 
occur, they cannot be assigned to a distance value. They do, however, correspondingly 
increase the scope of n. Finally, the procedure is the same as for the sudden death 
method, the only difference being that the number of previous parts is calculated 
differently. In the sudden death method, the number of previous parts is 0 at the start 
and 2 in the example. In sudden death, the mean ordinal always begins with the 
number of the defective parts whereas this method additionally takes into account the 
non-damaged parts.  
In contrast to Sudden Death method the necessity already arises for the first failure 
point for a correction, because this is incomplete. Instead of 1 the rank number 
becomes accordingly higher: 
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13. Tests with normal load 

Components and their tolerances (illustrated on right) are normally designed such that 

they have a corresponding safety allowance (safety factor = BF  / ) with respect to 

the load (illustrated on left). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There is an unavoidable overlap when the random samples of both distributions are 
considered as unlimited. This overlap corresponds to the number of "defects" or 
represents the failure probability PD. A lower component tolerance results in a smaller 
overlap. PD is calculated with: 
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ss
P


  where   = Normal distribution for µ = 0 and s = 1 

Strictly speaking, the calculation refers to components in the fatigue strength range. 
When used for the strength range for finite life, the deduction is to be referred to a 
certain load time or a number of load cycles.  
 
A certain number of vehicles, for example is tested as part of the trials. The tolerances 
and fundamental design layout of the parts or components used exhibit a normal 
distribution in terms of their strength. Since the sample is a limited number random 
sample, the limits will be reached only at a certain value. The load cycles used in the 
trails also exhibit a normal distribution, however, more stringent conditions are 
simulated by additional driving cycles. 
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No failures occur in view of the still sufficient "safety margin". However, further 
tightening of the test conditions in the vehicle is not possible. The question is therefore 
posed how many components will fail in the entire production (constant progression of 
the distribution in the background). This results in an overlap of the lowest component 
strength with the highest-occurring load. 
The following section illustrates how a corresponding statistical deduction can be 
made. 
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14. Tests without failures - Success Run 

Minimum reliability and confidence level 

In order to be able to draw conclusions with regard to the reliability of a component or 
assembly, tests are conducted with a limited number of test samples prior to actual 
series production. This is a relatively reliable method of discovering fundamental 
design flaws or manufacturing faults. On the other hand, the probability of determining 
faults that occur randomly or at low frequency is low if a considerably higher load  
cannot be applied in the test. This is generally the case in vehicle tests, in contract to 
the special component tests conducted on component test rigs or in the laboratory, 
permitting an increase in load by a factor of 2 and higher.  
The initial question is how high is the probability PA that a test specimen fails during 
the test: 

n

tA RP 1
  
 

Rearranging the formula:  
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The reliability for the test time t is calculated using:  
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A reliability Ra: applies for the defined service life ta: 

b
Ta

a

t
eR

)/(
  

Equating the two relationships and defining Lv = t / ta results in:  
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Together with the number of test specimens   n
At PR

/1
1   and equating results in: 
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where Rt = Reliaiblity at test time t for a test specimen; n = Number of test specimen
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The reliability Ra is to be considered as the "guaranteed minimum reliability“.
 

 
Example: The following representation is achieved for a confidence level PA=0.8 and 
an estimated b=2. 

In the 3D representation it can be seen that a further increase at the level of Lv and n 
provides no further decisive advantages.  
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On examining these considerations in the Weibull plot the following representation is 
obtained (PA = 0.80  > upper confidence bound 90%   t = 30000     Rmin = 90% )   
 

 
 

 

PA was originally introduced as the probability for the failure of a test specimen. The 
prerequisite is that these test specimens are a random sample of a "population". A 
conclusion is drawn based on the samples where the definition corresponds to the 
confidence bound of the illustrated Weibull plot.  
The calculated minimum reliability is not valid if the test specimens are "hand 
specimens" or prototypes with their manufacturing process not corresponding to 
subsequent series production. 
 
It should be noted that a lower b results in a lower minimum reliability. Initially, this is 
not to be expected as a low b results in a lower slope on the Weibull plot and therefore 
a higher failure frequency. This effect is caused if the target running time is less than 
the test time and one is moving to the left with a flat slope. 
 
It can generally be assumed that for the confidence level or for determining the 
reliability, it is better to test less samples size for a longer time than many samples for 
a relatively short test time. On the other hand, with fewer samples the conclusion 
concerning the component scatter is also less reliable (minimum number of samples). 
 
Lv should always be greater than 1 if the load cannot be increased. Irrespective of the 
mathematical minimum reliability, no part must fail at Lv<1 (minimum requirement). 
 
If conclusions are to be drawn with regard to the reduction in service life to higher load, 
tests with concrete failures will be necessary, represented in a stress-cycle (Woehler) 
diagram. 
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If a certain minimum reliability is defined and the question is what confidence level is 
reached, the above formula is to be correspondingly rearranged to result in b=2 and 
R=80%: 

 

 

Minimum number of samples for tests 

It is often necessary to determine the minimum number of test specimen for the 
purpose of verifying the defined reliability. However, there is no generally defined 
procedure for this purpose. In accordance with VDA, the necessary minimum number 
is calculated by transposing the formula for n: 
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For PA=0.80 and b=2 this results in:  
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As illustrated, the prerequisite for this scope of random samples is that no failures 
occur.  
The procedure for determining the confidence bound can be used for establishing the 
minimum number of samples, resulting in the same consideration as when using a 
defined confidence level.  
 
Example: The number of components to be tested is to be found if a double test time 
compared to the required service life is possible and a minimum reliability of R=90% is 
required. No parts fail during the test. This results in n=3 for a confidence level of 
PA=0.80.  
 

Determining minimum reliability for several test groups with 
different running times 

 
If there are several identical products with different running times used in the test (or 
in the field), each running time completed without failure will contribute to deducing the 
minimum reliability. Corresponding classifications of the running time are preferable 
formed for this purpose. Example: The following running times and number of "test 
specimens" serve as the basis for a confidence level of PA=80% and a required service 
life of 100,000 km (assumption b=2): 
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The running times were sorted in descending order and the calculation started at the 
longest running time. This produces the following points in the diagram: 
 

1) 10 parts survived without failing at the longest running time of Lv=1.0  
2) This corresponds to a quantity of 20 parts at Lv=0.7 (identical Rmin). 

20 parts were tested without failure at Lv=0.7  
3) Together this results in approx. 40 parts at Lv=0.7 
4) This corresponds to a quantity of 50 parts at Lv=0.62 (identical Rmin). 

20 parts were tested without failure at Lv=0.62 
5) Together this results in approx. 90 parts at Lv=0.62 

 

 
 
The result is a guaranteed minimum reliability of approx. 95%. Referred to the 

minimum reliability relationship already introduced, the total Rmin,ges is generally derived 
from: 
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If failures occurred unexpectedly during the tests, the minimum reliability will then be 
based on the test running time achieved up to this point and the number of test 
specimens n’ still to be tested: 
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k    =   Number of different test times (collectiv) 
n’   =   Number of test specimens to be tested without failure 
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Lv’ =   Test time to be tested for the test specimens without failure 
 

Taking into account previous knowledge 
 

If previous knowledge of the components is available (Bayes method), it can be taken 
into account by using the Beyer/Lauster method /23/. This previous knowledge can 
originate, for example, from predecessor models and is expressed by the value Ro that 
is valid for a confidence level of PA=63.2%. The expected minimum reliability is: 
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In the same way as the factor  defined under /26/ for taking into consideration the 
applicability of the previous knowledge, it is used here under the term previous 
confidence level to give:  

 
)/1ln(/

1

1min

Rob
vLn

APR


  

 

The previous information factor must lie between 0…1.   =0 signifies that no 

previous information should be used whereas  = 1 means all previous information can 
be used.  

 can, for example, assume the following values when the following applies to the 
components of the earlier tests:  
 

 The components and the tests are identical to the current status or are 
100% comparable 

 Components have been slightly modified or the design status is identical 
but from different manufacturers 

 Components have been partially modified, e.g. material properties 

 Components agree only in terms of their concept (rough estimation) 

 
The preliminary confidence level can also be used to express when the test changed. 
The reduced number of samples is therefore:  
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An acceleration factor can be used to take into account different loads from earlier 
tests. This acceleration factor is discussed in the following sections dealing with the 
component strength (service life in the Woehler diagram).  
Further details can be found under /23/, /25/ and /26/. 
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Determining t10 (B10) from minimum reliability without failures 

If there are no failures in the tests, the following steps can be applied to calculate a 
t10 service life: 
 
Step 1: Determine a minimum reliability Rmin from existing tests -> Point (1) in the 
diagram. 
 
Step 2: Determine a mean service life ratio Lvm, that is equivalent to the previous 
tests. The following formula is used for this purpose: 
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Rearranging the right side for Lv results in: 
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Step 3: Calculate the reliability value on the Weibull curve with PA = 50% -> Point (2) 
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The Weibull curve is now defined by specifying the slope b and the Point (2) on the 
curve.  
 

Step 4: 
Rearranging the Weibull distribution for T results in: 
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Step 5: 
Calculation of t10 (or B10) -> Point (3) 
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Minimum reliability in tests with unexpected failures 

The relationship used to date no longer applies if failures are permitted to occur in the 

test. Rmin will then be calculated based on the ² distribution (see /24/): 
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 with  r = number of failures during the test 

 
Strictly speaking, the previous example with a failure rate at Lv=1.1 is not quite 
correct for the further calculation. To simplify matters, it was assumed that the test 
specimen was removed just before reaching the failure at Lv=1.1.  
 

By way of transposition, the necessary new scope of samples is derived from 
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This approach is to be applied when the times at which the failures occur are still 
uncertain. However, since the number of failures cannot be forecast in advance in 
practical terms, this calculation is of corresponding significance only for presenting 
scenarios.  
 
Example: n=5, b=2, Rmin=0.8, PA=0.9 
Necessary testing time for the required minimum reliability 
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No failure   Lv = 1.43 
1 failure   Lv = 1.87 
2 failures   Lv = 2.18 
 
 

Reliability from Binomial-method 

In general applies to the statistical assurance without given running time the Binomial-
method. 
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R  is the the reliability for not defined running time (normally to describe the quality after 
production). For the representation often the so called “Larson-Nomongram” is used, 
because the formula can not be resolved for R. Especially in industrial series production 
the Binomial-method represents an important tool for assessing the quality level for the 
sampling technique and for the control charts. 
 
In case of no failures (x = 0) the equation becomes the simple form 
 

n

A RP  1  
 

which is conform to the success-run-method. 

  

  

with   x  =   number of failures  
 n  =  sample size 
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17. Service life in the stress-cycle (Woehler) diagram 

The stress-cycle (Woehler) diagram represents the service life (alternating stress 
cycles or running time) of a component as a function of load.  
 

 
The short-term strength range covers approx. 104 alternating load cycles. This figure 
exceeds a load limit at which damage can occur. In the finite life fatigue strength range 
a diminishing number of stress cycles occurs until fracture) as the load (component 
stress) increases. This range is a straight line on the double logarithmic scale. The 
following Palmgren-Miner relationship applies: 
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where  N     =  Number of stress cycles 
 ND    =  Number of stress cycles as from which fatigue strength exists 

      =  Component stress 

 D     =  Component stress as from which fatigue strength exists 

 k     =  Woehler exponent (e.g. steel k =10..11, cast iron k =13..14, aluminium k  12) 
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The fatigue strength range begins as from a certain load. As from this point, the service 
life of the component is no longer dependent on the number of stress cycles. Different 
loads occur in actual operation that can be determined by way of measurements and 
grouped in collectives (stages).  
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The number of stress cycles that can be borne is calculated in accordance with the 
elementary Miner rule (EM -> Extension of the slope k): 
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Past experience has shown that the simple Palmgren-Miner rule defines the service 
life as too good and the elementary Miner rule as too unfavourable. Haibach therefore 
proposes to halve the two ranges. Consequently a slope of 2*k-1 is used  
 
 

 
 

 
 
 
 
and load conditions below the fatigue strength can also be taken into account. The 

index m refers to the collective up to the fatigue strength kink, i.e. up to D. Past 

experience has also shown that damage below 0.5*D has no influence. 

Deriving stress-cycle Woehler diagram from Weibull evaluation 

The prerequisite for the failure points within a curve in the Weibull diagram is that they 
are all subject to the same load. In contract, the stress-cycle (Woehler) diagram, the 
running time or number of alternating stress cycles is repeated as a function of the 
component load (ordinates). Consequently, it is possible to draw a conclusion with 
regard to the expected service life under a certain load. On the other hand, a deduction 
cannot be made as to what percentage of the components will fail under a certain load. 
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This is, however, possible through the combination of Weibull evaluation and stress-
cycle (Woehler) diagram.  
 

 
At a certain failure frequency, e.g. 50%, the point in the Weibull diagram is projected 
downward to the stress-cycle (Woehler) diagram for each load case. The Woehler line 
can be drawn by connecting these points. In the same way, a probability range can be 
created in the stress-cycle (Woehler) diagram for a certain range, e.g. 5% and 95% 
failure probability.  
In practical applications, it can be seen that the Weibull gradients or slopes differ under 
various loads as they are also subject to random scatter. Since the 5% and 95% lines 
are directly dependent on the slope of the Weibull curves, this results in either 
expanding or tapering ranges in the stress-cycle (Woehler) diagram. Greater "absolute 
scatter" of the test results can be expected at higher alternating stress cycles (running 
times at lower loads).  
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This comes about, however, not only through an expanding (widening) range but also 
in a range with a parallel progression due to the logarithmic scale.  
In view of the same test conditions, as already described, the slope rates should 
essentially not differ. It is therefore recommended to use a mean slope b in the stress-
cycle (Woehler) diagram to determine the 5% line and 95% line. These lines then run 
parallel to the 50% line.  
This representation is, of course, only possible for the fatigue strength range for finite 
life. The fatigue endurance strength range, as is typical for steel components and at 
which the Woehler line changes to a horizontal, cannot be determined as in this case 
failures no longer occur. Since certain materials more or less always have a certain 
fatigue strength range at higher running times or alternating stress cycles, when 
evaluating materials with unknown characters, as many "load points“ as possible 
should be checked in order to determine a kink in the curve.  
The slope can be determined by transposing the previous formula for k  
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(Please refer to the section entitled "Service life in the stress-cycle (Woehler) diagram). 
The second point in the stress-cycle (Woehler) diagram is used instead of the fatigue 

strength (D) and  is generally replaced by the force F to give: 
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Woehler with different Loads (Pearl-Cord-Method) 

If all tests are carried out with different loads, none can be just provided in the 
probability chart. The method to project downward from 50% probability is not possible 
therefore. 
Nevertheless, for the log-normal-distribution there can be used the so called “pearl-
cord” method. Condition is that the slope is the same in the probability chart with 
different loads. That means, we expect that the logarithm standard deviation is 
constant over the range. 
For one load the logarithm standard deviation is: 
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For different laods there are different t50%-values. The logarithm standard deviation can 
be calculated therefore with: 
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The 
Woehler straight will be now determined through the least square method (points in X- 
and Y-direction each logartihm). 
 
This straight line represents the median- respectively the t50%-values. The probability 
for 5% and 95% will be determined through the invers-function of the normal-
distribution (standardized quantile). 
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This method will be used, if there are less test results. But the minimum should be 5 at 
least. Besides, not all tests must run with different loads. Nevertheless, it should not 
be used less than 3 load  levels. 
 

Weibull plot for different loads 

As already mentioned, several times, the X-axis is normally a "running time". A 
prerequisite for the respective curve in the Weibull plot is that the same load must 
predominate. However, only the load is possible as the X-axis in the case of tests 
where the running time is always the same but the load varies. A simple logarithm is 
taken of the load axis (the Y-axis in Woehler) as well as of the running time axis. The 
running times now become longer as the load decreases. The following connection 
can be represented corresponding to the previously defined relationships between 
Weibull and the stress-cycle (Woehler diagram. 2 loads B1 < B2 are assumed. 
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The grey zone represents the relationship between load and failure frequency while 
the lower level is the stress-cycle (Woehler) diagram.  
A defined running time t1 (cutting plane) applies for transfer to the left-hand diagram, 
resulting in the red curve for which following relationship applies.  
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Transposition of the 2-parameter Weibull formula results in the characteristic load 
represented by: 
 

 

120

140

160

180

%

0.01

0.02

0.04

0.1

0.2

0.4

1

2

4

10

20

40
60

99.99

t 1
Laufzeit t

Bel
as

tu
ng

 BA
u
sf

a
ll

w
ah

rs
ch

e
in

li
ch

k
ei

t

B1
B2

'

1

b

B

B

cheH

















Running time t

Lo
ad

 B

U
n

re
l ia

b
il i

ty

120

140

160

180

%

0.01

0.02

0.04

0.1

0.2

0.4

1

2

4

10

20

40
60

99.99

t 1
Laufzeit t

Bel
as

tu
ng

 BA
u
sf

a
ll

w
ah

rs
ch

e
in

li
ch

k
ei

t

B1
B2

'

1

b

B

B

cheH

















'

1

b

B

B

cheH

















Running time t

Lo
ad

 B

U
n

re
l ia

b
il i

ty

  */1

11 )1ln(
b

ch HBB




74   www.weibull.de 

The same relationship as in the normal Weibull plot applies. Different curves, to 
which various running times apply, can also be represented.  
 

18. Accelerated life testing 

The aim of accelerated life testing is to shorten the testing time. This is virtually always 
necessary in the development of components or parts as the required "running times" 
would be much too long under normal operating load conditions.  
Essentially, the test must be designed so as to represent a realistic load case and 
overload breakage“ does not occur. In the Weibull plot this means that the slopes of 
the failure straight lines must not differ substantially between test and field.  
 

 
 

The accelerated life factor  is derived through: 
1

2

t

t
  

With a constant slope (parallel progression),  or the ratio t2/t1 is independent of the 
failure frequency level.  
The test exhibits a relatively large confidence bound depending on the number of test 
specimens. The number of components in the field will generally be considerably 
higher (nPrüf << nFeld), resulting in a smaller confidence bound. If the field observations 
are complete, the confidence bound will drop to the best-fitting straight line as the entire 
population is represented.  
  
Case 1: No failures in the test despite increased load 

A Weibull plot cannot be produced for tests where no failures occur. Instead 
corresponding calculations are performed with a minimum reliability in accordance with 
VDA.  
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Lv is the ratio of the testing time to the required service life at constant load as in the 
field. An accelerated life factor is to be taken into account in the case of a higher load: 
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While the accelerated life factor shortens the actual testing time, it has the positive 
effect on Rmin of lengthening the testing time.  
 
Under certain circumstances, it may be necessary to take into account different units 
for the service life between testing and in-field (e.g. alternating stress cycle and km). 
An "accelerated life" already prevails if the same alternating stress cycles can be 
performed within the test faster than during customer operation. This accelerated life“, 
however, is calculated by correspondingly converting the units. The accelerator life 

factor  therefore applies only to the higher load case.  
 
Case 2: Failures occur 

The equation for the Weibull distribution is used for the purpose of drawing conclusions 
with regard to the failures in the field from the failure frequency in testing with the 
accelerated life factor 
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included in the calculation. The corresponding "running time" in the exponent can be 
determined using the inverse function of the distribution resulting in the following form 

with Tfield =  Tpr: 
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To simplify matters in this case it is assumed that there is no failure-free time to. 

 

Determining the accelerated life factor 

To determine the accelerated life factor either there must be failures in the field and 
during testing or it is determined from the load differences in the stress-cycle (Woehler) 
diagram.  
In the stress-cycle (Woehler) diagram, the following applies to only one load in the 
fatigue strength or finite life range: 
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However, since there is never a constant load in the field but rather a load collective, 
the following formula applies to the fatigue strength for finite range or for the 
elementary-Miner rule (no fatigue endurance strength range): 
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Generally, only one load is used in testing:  
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representing the accelerated life factor for components without fatigue endurance 

strength. Instead of  a force or any other variable can represent the load. In 
accordance with Haibach, the further progression to ND is assessed with half the slope: 
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Due to the second section with a different exponent, D  cannot be cancelled down, 
resulting in the formula: 
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Accelerated life factor for components with fatigue endurance strength range (half 
taken into account). 
The prerequisite for estimating the accelerated life factor from the stress-cycle 
(Woehler) diagram is accurate as possible knowledge of the material (exponent k) and 
of the load collective. For literature please refer to /19/  /20/ 

19. Temperature models  

Arrhenius model 

In many cases (non-metallic materials), the service life is greatly dependent on 
temperature. This is particularly true in the case of elastomers and plastics which are 
used to an ever increasing extent. The Arrhenius model is used for the purpose of 
representing this relationship. It is based on a chemical reaction with a corresponding 
reaction rate v. Formula: 
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o evv
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  

where  vo : Proportional constant 
   Ea   : Activation energy (component-specific) 
 K : Boltzmann constant (k=8.617 10-5 eV/Kelvin) 
 T : Absolute temperature in Kelvin 
 
The following applies to failure rates especially for the failure characteristics of 
electronic components:  
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The activation energy is generally between 0.1 and 1.0 eV.   

The following example shows the scaled failure rate (for o=1) in the range from 
20 °C – 120 °C. 

 

Kelvin
300 320 340 360 380

A
u

s
fa

ll
ra

te
 

2

4

6

8

10

Ea=0,1Ea=0,1Ea=0,1

Ea=0,2Ea=0,2Ea=0,2

Ea=0,3Ea=0,3Ea=0,3

Ea=0,4Ea=0,4Ea=0,4

Ea=0,5Ea=0,5Ea=0,5

Ea=0,6Ea=0,6Ea=0,6

Ea=0,7Ea=0,7Ea=0,7

Ea=0,8Ea=0,8Ea=0,8

Ea=0,9Ea=0,9Ea=0,9

Ea=1Ea=1Ea=1

Aktivierungsenergie

°C

Temperatur

20 40 60 80 100 120

F
a
ilu

re
 r

a
te

 

Activation  
energy 

Temperature  



78   www.weibull.de 

The failure rates increase at higher temperatures (T1>To) and a so-called acceleration 
factor can be defined: 
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Among other things, this relationship can be used for accelerating procedures in 
laboratory tests. The acceleration factor therefore has the same effect as the 
accelerated life factor  at a constant initial failure rate over time (b=1). 

The prerequisite is the knowledge of the component-specific activation energy which, 
if not known, must be determined by way of tests. The rule of thumb that an increase 
in temperature by 10 °C doubles the failure rate or halves the service life is often used 
as the basis for calculations in the range between 70 °C and 120 °C.  
 
The disadvantage of the Arrhenius model is that the failure rate is used and not the 
lifetime itself.  

 
Coffin-Manson model 

The following formula is used in cases where different loads apply: 
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Coffin-Manson used this relationship with k = 2 for the temperature dependency:  
 
 
 
 
This therefore makes it possible to use Woehler fundamentals and methods. An 

offset can also be used instead of T ((T1-Offs)/(T2-Offs)). The parameter k and the 
Offs must be determined by testing.  
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20.  Highly Accelerated Life Tests 

HALT Highly Accelerated Life Test 
 

The highly accelerated life test (HALT) serves the early detection of development and 
process weaknesses (is the production process suitable?) The load is increased in 
stages at a stress level far above that of normal operation (combination of mechanical 
stress + temperature increase). This test is mainly used for electrical and electronic 
assemblies. A variant of this test for mechanical systems is the Failure Mode 
Verification Test. The figure to the right shows a 
heat reverse bending cycle test rig for ribbed V-
belts.  
 

   Suitable for detecting early failures  

   Disadvantage: Weibull parameters cannot  

         be determined, permissible limit? 
 

HASS Highly Accelerated Stress 
Screening 
 

The highly accelerated stress screening test 
(HASS) serves the purpose of securing and 
increasing series production quality -> 100% of 
production is screened. In contrast to the HALT test, 
a reduced load is used. The components must not 
be damaged -> a suitable stress level must be 
determined. The HASS test generally detects 
changes in processes and production.  
 

HASA Highly Accelerated Stress Audit 

 

The highly accelerated stress audit HASA is used for testing random samples. 
This procedure involves destructive testing of the component which is then no longer 
used.  

Fan  
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21. Field prognosis  

Data preparation for field analysis 

If there is service life data in which not all parts have failed, this data is called 
incomplete or censored. In particular, if parts that are still intact have shorter service 
lives than others with a failure, the failure frequencies must be corrected. This 
description is about data preparation. 

This description shows how to properly split the data from the failed and healthy units. 
This is necessary, for example, in order to be able to use the Johnson or maximum 
likelihood method, which is widely used for censored data. Furthermore, it is about 
several possible errors or parts in a system. 

How is the service life and useful life of the intact parts determined? The useful life 
until failure or the service life is always the time between the start of usage and the 
time of failure. When considering the useful life (lower graphic), the calendar starting 
point is irrelevant. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The useful life shown in the lower time axis corresponds to the x-axis in the Weibull 
diagram i.e., the service life. 
 

Now how are the intact (censored) units divided and their useful life determined, which 
they will still live to see? To do this, we look at the period from the start of use to the 
time of evaluation: 
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With the number of units produced in the calendar period, it must be taken into account 
that these units will be used later or will start later. This time is referred to as the delay 
time. As a rule, an average delay of 1-2 months is assumed. If the month of production 
and the registration date are known e.g., for vehicles, the average delay time can be 
calculated from this. This results in the table of failures and the table of units produced: 
 
 

complaints production   

 

month number 

3 2 

5 1 

  

     

month number 

1 100 

3 300 

5 200 

7 300 

 

For the representation in the Weibull diagram, failures and the intact units must be 
listed with the times they have been in use. The intact units result from the production 
quantity minus the failures. Physically, the concrete failures must be subtracted from 
the quantity where they were produced. In simplified terms, allocation is often made 
based on the usage time, which results in the following table: 
 

 

Intact units 
 
 
 
 
 
 

First of all, the number of failures plus the number of intact units has to add up to the 
total production. Since every failure has to be replaced by a spare part, the reference 
value n increases again by the number of failures. The previous deduction of the 
failures from production cannot be compensated for here, because the useful life of 
the failures and the spare parts are different: 
 
 
 
 
 
 
 
 
 
 
In addition, there are 3 further units with 8, 3 and 1 months useful life after installation 
up to the time of evaluation: 
 
 
 
 
 
 
 replacements intact units  total number intact 

month number 

1 100 

3 298 

5 199 

7 300 
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 month number 

1 1 

3 1 

8 1 

     

 month number 

1 100 

3 298 

5 199 

7 300 

month number 

1 100+1 

3 298+1 

5 199 

7 300 

8      1 

 
Ultimately, the Weibull distribution table results in the following combined table of 
failures and total number of intact units. The intact units are marked here by definition 
with a minus: 
 

 
 
 
 
 
 
 
 

 
This table gives 
the Weibull net 
shown on the right 
with the Johnson 
method. 
 

 
Repeated failure of a repaired part 
 

In the event of a complaint, the affected part will be replaced with a new one, as 
described. However, this replacement (spare part) can fail again. When that happens, 
it's called a recurrence event. The useful life of the repeat case must relate to the time 
of the previous failure. 
 

        
 
The logic is the same as for the spare parts described in the previous section.  
 

In principle, one can say that all spare parts that are still "running" increase the 
number of units by defining their useful life in a table. Any parts that failed from the 
original production reduce the number of intact units from that production. 
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Several different components in the system 

For the reference variable n for calculating the median rank values, the number of 
system units (e.g. vehicles) must be multiplied by the number of parts, because 
theoretically a system can often fail due to its parts. Mathematically, this assumes that 
the parts fail independently of each other. 
Correctly, one would have to make a separate Weibull analysis for each component, 
because each component has its own failure characteristics and thus different b. The 
system is then combined into a common Weibull via a serial block diagram. In other 
words, the overall reliability of the system is known Rsystem = Rcomp1  Rcomp2  Rcomp3 …. 

Rcompz. However, the problem then is that some parts have too few failures to be able 
to determine a representative component reliability using a component Weibull. For 
this reason and for reasons of simplification, a "system Weibull" should be made here.  
However, the determined gradient b of the system can only be interpreted to a very 
limited extent or not at all, because it is a mixture of different causes of failure. 
However, this is more about a business perspective than a correct Weibull 
interpretation. 
 

Several identical components in the system 

A good example of identical components are the spark plugs in the engine. A 4 cylinder 
has 4 spark plugs. The reference variable n would therefore have to be multiplied by 4 
in relation to the number of vehicles. However, the spark plugs cannot be individually 
identified or distinguished. In addition, they are always exchanged together in customer 
service. They should therefore be considered as a unit.  
The situation is different with redundant components. If there are two identical 
processors that make a controller redundant for safety reasons, these are to be 
differentiated with processor 1 and processor 2, for example. The failure characteristics 
would even be the same here. Otherwise, the same considerations apply as in the 
previous chapter. 
 
A redundancy increases the availability of the system, but not the situation of the 
repair (an exception are silent redundancies where the first failure is not noticed). 
 

Simultaneously exchanged parts per complaint 

In the event of a complaint, several parts are often exchanged at the same time. 
There are different scenarios here: 
 

1. All parts are independently defective at the same time 
2. he failure of one part causes the failure of the others in whole or in part 
3. Only one part is really defective, the others have been exchanged without 

justification 
 
Case 1 is very unlikely, case 2 is more realistic. Only a component analysis can clarify 
this, but this is often not possible for practical reasons. The parts would have to be 
returned for this. However, if an analysis is possible, the unauthorized exchanged parts 
should be removed from the list of complaints.  
 

If this is not done and a Weibull evaluation is nevertheless created, this is more of a 
business point of view, because the costs and spare parts have been incurred. 
However, as already mentioned, the gradient b determined can only be interpreted to 
a very limited extent or not at all. 
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Tabular representation 

1. Single failure 
 

 
 

Ident occurs only once 
 Failure with 8 months of use (21.2.2022-15.6.2021) 
 Intact service life spare part added (eval. date - 21.2.2022) 
 

2. Case of recurrence 
 

 
Same ident, production, approval and same part 
 First failure with 2 months of use (30.6.2021-22.4.2021) 
 Repeat case 10 months usage (30.4.2022 - 30.6.2021) 
 Intact service life spare part added (eval. date - 30.4.2022) 
  

3.  Multiple replacement 
 

 
 

Same ident, production, registration, repair but different parts 
 2 Complaints with 1 month usage (27.6.21-13.5.2021) (early failure) 
 2 x intact service life spare parts added (eval. date - 27.6.2021) 

As described, it must apply here that all parts were defective at the same time, 
independently of one another, which is a deliberate simplification. 

 

Weibull evaluation for operating hours or km 

If it is not the calendar time that determines the service life, but rather the actual useful 
life or the distance traveled in km, then information about the operating hours or the 
distance traveled is also required. A system may have mechanical and electronic 
components that can fail. For example, a vehicle transmission also has a control unit. 
The number of operating hours is decisive for this, while the km distance is more 
relevant for the mechanical scope. If the system is evaluated as a whole, you have to 
decide on a unit. It is recommended to consider the critical component here and to 
relate the unit to it. 
The calculation for operating hours or km is based on the same principles as described, 
except that the service life shown in the Weibull network is no longer the difference 
between repairs and the start of use, but the specified hours or km. The question, 
however, is how the intact units are scored. The answer is relatively simple if you have 
an average number of operating hours/month or mileage/month. With this, each period 
of use can be converted into months in the alternative "lifetime unit".  
If the parts produced still have an expected lifetime of 10 months up to the evaluation 
date and the average mileage/month is 2000 km/month, then 20000km is entered in 
the table for these parts. The mean mileage distribution information can be estimated 
from the outage data by dividing the km by the usage time. 
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It should be noted that the determination of the running distance distribution from the 
complaint data is a one-sided random sample analysis. It is also said that this is a 
negative selection that only refers to failed units and is not representative of the whole. 
Therefore, if possible, the distribution of running distances should be obtained from 
other data sources that have a larger sample of at least 1000 units. The same applies 
to the distribution of operating hours. 

Candidate field prognosis for mileage (automotive) 

Generally, relatively large deviations occur in the analysis of failures in the field based 
on long service lives. The cause is as follows: For example, when observing the 
frequency of certain fault cases on the Weibull plot at a distance (mileage) X, a certain 
proportion of the production quantity has not yet covered this distance and can 
therefore also not have failed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A correct conclusion as to the frequency of the failures at a distance (mileage) X can 
be drawn only when all produced components have also reached the corresponding 
mileage X. The analysis becomes progressively better the greater the time between 
the actual analysis and manufacture of the components. This is simply due to the fact 
that it is more likely that all components have reached a defined service life or mileage. 
It is, however, also necessary to draw the earliest possible conclusion with regard to 
"field data". This therefore means it is necessary to devise a method of including a 
prognosis of the components that have not yet failed. These components are known 
as "candidates“. A procedure for determining these candidates is described in the 
following (please refer to /3/). 
 

It is assumed that the candidates have the same failure probability as that of the failed 
components. If the statistical kilometre reading (mileage) of the vehicles under 
observation is known (mileage distribution), the failure probability of the candidates 
can be concluded by way of relatively simple calculation.  

survivalsl 

failures 

Unit 

Running time   
 

Possible further 

more failures at t ? 

Deduction of failure probability 

incomplete at this point t  
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The distance or mileage distribution may be ascertained both from the fault cases 
where the date of registration, date of fault and distance covered (mileage) are known 
as well as by conducting corresponding enquiries. The distance or mileage distribution 
indicates the percentage of vehicles that has not reached a defined service life 
(mileage). The distribution is appropriately scaled to mileage/months and can therefore 
be adapted in linear form to any other time scale. In practical application, however, it 
is necessary to take into account that this distance or mileage distribution is not 
constant. For example, the mileage will be low during the running-in period of a vehicle 
whereas the mileage will then increase year on year. It is also necessary to take into 
consideration the fact that the same components in different types of vehicles and 
under different operating conditions but also in different countries will achieve greatly 
varying mileages (e.g. taxis have very high mileage readings). The distance or mileage 
distribution is normally a lognormal distribution. However, since this is not available as 
a function, the Weibull distribution is used either with to or it is set out over 2 sections. 
For example: 
 

Distance or mileage distribution after 1 month 
X1 10.0%   720 km 
X2 63.2% 2160 km 
X3 90.0% 3700 km 
 

At the first reference point X1“, 10% of the vehicles have not yet reached 720 km. At 
X2, 63.2% of the vehicles have not yet reached 2160 km and so on. After a month 
(observation period), this distance or mileage distribution appears as follows in the 
Weibull plot: 
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From this representation it is possible to determine how many vehicles have not yet 
reached a specific mileage. From a mathematical point of view, the inverse Weibull 
function is necessary at this point (see annex). It is therefore possible to calculate the 
number of candidates from the production quantity. Let us assume the following 
concrete failures of a certain component are analysed, sorted in ascending order of 
distance covered (mileage): 
 

Ordinal i Failure times at km 

1 2000 

2 2800 

3 4500 

4 5000 

5 6000 

6 7000 

7 8000 

8 8000 

9 9000 

10 10000 

11 11000 

12 13000 

13 15000 

14 17000 

15 20000 

 
The corresponding candidates are initially determined as a percentage for each 
distance covered, at which a failure occurred, represented in the distance or mileage 
distribution diagram. The absolute number is now calculated based on the production 
figures. Initially, this quantity applies to the first value (candidate at 2000 km). The 
following candidates are now calculated from the subsequent number of vehicles that 
have not yet covered the corresponding distance (mileage), minus the previous 
candidates and failures. The calculation may result in a negative number of candidates 
that must be set to 0.  
A "corrected“ failure frequency can now be determined from the candidates. This is 
calculated using: 
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where  i   :   Ordinal 
      n    :   Production quantity 

     Ai         :   Number of failures at point i 
 Nan  :   Number of candidates from- 
                               distance distribution 
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The following diagram shows the entire calculation procedure in simplified form:         
 

 
 
The initial values for starting the calculation for i=0 are set to 0.  
In the case of the above example, the following corrected failure frequencies or 
prognosis line are achieved based on a production quantity of 999: 
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It is particularly noticeable that the corrected failure frequencies become effective only 
after the distance covered (mileage) has become longer as less and less vehicles have 
already reached the corresponding distance/mileage (large number of candidates).  
The implementation period which is equivalent to the observation period has a 
particular influence on the corrected failure frequency. As already mentioned, the line 
of the corrected failure frequencies will always be closer to the line of the concrete 
failures the further the observation period lies in the past or if it is very long. In this 
case, all vehicles have already reached the corresponding mileage and there are no 
new candidates. In addition, component analysis should be performed only in a very 
closely delimited period of time (max. 3 months) as the observation period applies only 
to one "point" (mean value between the first component and the component last 
produced).  
In the literature it is recommended to classify the data in case of more than 50 failure 
points, but the disadvantage is to detect mixed-distributions and unregularities. Note: 
not all differences to a straight line have technical reasons.  
  



90   www.weibull.de 

A kinked progression (shallower start) often occurs over the distance covered, also for 
the prognosis or forecast line.  
 

 
 

 
This may be attributed to the fact that the defects occur outside the warranty period 
and are therefore no longer included here. The data are considered as elapsed 
although they involve concrete "failures". As a rule, this conclusion can be drawn when 
the "kink" occurs above 40000 km. In this case, it is very probable that the warranty 
period has elapsed. If the kink is below 40000 km, it must be assumed that only a 
certain "assembly" or a limited production batch is affected and thus, despite the higher 
kilometre reading (mileage), no further failures are to be expected.  
For further information please also refer to the sections "General evaluation problems" 
and "Mixed distribution".  

1000 2000 4000 10000 20000 40000 100000

%

A
u

s
fa

llh
ä

u
fi
g

k
e

it

0.01

0.02

0.04

0.1

0.2

0.4

1

2

4

10

20
30

50

70

91

99.99

S
te

ig
u

n
g

 b

0

2

4

6

8
U

n
re

lia
b

ili
ty

 

S
lo

p
e

 b
 



www.weibull.de   91 

Determining distance or mileage distribution from "defective parts" 

As described in the introduction, the distance or mileage distribution can also be 
determined from the defective parts data. For this purpose, the following data are 
required for each defective part:  
- Vehicle registration 
- Repair date 
- Kilometre reading (mileage) 
The "operating time" of the component is determined from the difference between the 
repair date and vehicle registration. These data are entered in a table together with the 
distance covered (mileage). As mileage distribution can be determined only for the 
same operating periods, the data are scaled to one month, i.e. the mileage is divided 
by the time in operation.  

The point of intersection 
of the best-fitting line 
obtained from these data 
at 10%, 63.2% and 90% 
frequency (probability) 
provides the required 
kilometre values at these 
points. Perpendiculars 
are drawn at the 
corresponding frequen-
cies for this purpose (see 
example). The 
determined values can 
now be adopted directly 
in the actual Weibull 
evaluation.  
It must be borne in mind 
that this evaluation is 
based on a "negative 
selection". This means 
that, in most cases, the 
vehicles with the failures 

have a higher mileage per month than the representative cross section. Using the 
distance or mileage distribution based on defective parts therefore normally means 
obtaining a relatively low prognosis. 
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Candidate prognosis/characteristics 

 The deviation between the prognosis (forecast)  

      and actual curve is greater the shorter the observation  
      period. 
 

 The delay (time between production and registration)  

       shortens the observation period accordingly.  
 

 The deviation between the prognosis and actual 

curve is greater the lower the distance covered 
(mileage) per month.  
-> The probability for candidates that the observed 
distance was not reached increases. 

 

 Mileage distributions based on defects is often too 

high and not always representative for overall 
production. 

 
More detailed analysis with parts evaluation 

Different components are generally replaced in connection with Weibull analyses 
based on problems established by way of defect or fault codes. If this information is 
available together with an identification number (ID), additional parts evaluation can be 
performed that may be of assistance in finding the cause of problems.  
 

 
 
Only the vehicles (or products) appear classified in the Weibull plot. In the majority of 
cases, however, several parts are replaced within one ID and therefore one problem 
case. These parts can be represented in terms of distance (mileage) by the Weibull 
diagram.  
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More points than in the classified Weibull diagram, which also shows only the number 
of vehicles (products), appear in the above diagram. The important factor in this 
diagram is the respective assignment of the kilometre ranges.  
This example exhibits a range of random failures (up to approx. 10000 km) for the 
candidate prognosis curve as well as a wear-related section in the upper area. The 
distributions of the transmission and power unit parts are significant in this diagram. It 
is possible to conclude that, based on the kilometre assignment, the transmission is 

more likely to fail due to production faults (slope b  1) while the power unit in the upper 

range of the slope at b  2 is conspicuous due to wear.  

 
No distinct conclusion can be drawn for other parts. In practical applications there is 
the added problem that service technicians do not always make the correct diagnosis 
and parts are often replaced that are actually in working order. The analysis is therefore 
correspondingly fuzzy depending on the circumstances. 
 
The option of achieving improved parts analysis would therefore include, for example: 

 Subsequent technical parts analysis 

 Plausibility check 
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Ultimately, only a Pareto distribution can be derived from the number of parts in order 
to indicate where the focal points of defects are located.  
 

 
 
A further point to be borne in mind relating to the above problems is that when replacing 
certain parts, inevitably other parts must also be replaced, especially small parts such 
as screws, cable straps etc. Other cases involve seals that must always be renewed 
when replacing the actual defective parts. These elements are, of course, of no 
significance with regard to the analysis as it only concerns the important components 
such as the power unit or transmission in our example. 
 
 
 

22.  Contour-plots “Schichtlinien” 

The problems that occur over the production month are collected in so-called contours 
. Contour lines are plotted representing constant vehicle age. This type of diagram is 
therefore also known as an isochrone representation. When considering the line with 
the vehicle age of 6 months, for example, all current problems relating to vehicles that 
are 6 months old are entered 6 months back from the observed period (production 
month). All vehicles aged 12 months are entered in the next line 12 months back. This 
results in a "historic“ record of the problems over time.  
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As a rule, the produced parts differ from month to month with regard to their tolerances 
and properties as well as in the assembly process, indicated by substantial fluctuations 
in the line progressions.  
 
Advantages of contours 

 Overview of changes in production quality and production process 

 Assignment of corrective action possible in series production 

 
Disadvantages 

 The causes of the problems are not indicated 
 

  Lines with vehicle age lying far in the past break down with  

       respect to time so that continuation is possible only as a prognosis 
  

 Percentage of repeat problems not recognisable 

 
In the majority of cases, performing Weibull analysis for each month means involved 
data processing and is therefore correspondingly time-consuming. 
However, it is possible to estimate the Weibull parameters quickly and simply directly 
from the contours.  
 

Weibull parameter b from contours 

When the contours are considered as a 3D representation, the vehicle age is indicated 
in depth. With the mileage of the vehicles known and, to simplify matters, assuming 
constant mileage over the vehicle age, this axis also corresponds to the distance 
covered.  
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Viewing the diagram from the right-hand side, it can be seen that the representation is 
nothing else than a Weibull diagram with linear axes.  
 

 
Corresponding to the number of contours, points (red) are obt  ained for a certain 
production month. These points can be used to determine the Weibull parameters in 
pairs (two points are required for the two-parameter form). By rearranging the Weibull 
functions for T  
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and equating followed by subsequent resolution for b, the following result is obtained 
for the two points (t1,H1) and (t2,H2): 
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The kilometre values (mileage) that are derived from the vehicle age times the mean 
distance covered per month (t = A * LproM) are obviously required in the denominator. 
However, since the logarithms t-values are deducted from each other, it is not 
necessary to convert the actual kilometre values. It is simply sufficient to specify the 
months as per the following: 
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With A = vehicle age in months it is therefore possible to simply determine: 
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The driving distance or mileage distribution is therefore not necessary for determining 
b alone. The information derived from the contour is sufficient for this purpose. 
However, the actual operating time is to be used for A1 und A2. The delay that lies 
between production and actual vehicle operation is to be deducted. If influence is not 
negligible and must be at least estimated if no concrete data are available. 
The transposition of the two-parameter Weibull formula results in the characteristic life 
T:  
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The kilometre value (distance) of t is, however, required for this formula. Instead of the 
characteristic life T in km, a characteristic vehicle life T* in months can also be used, 
resulting in: 

LproMTT  *
 

Entered in the 2-parameter Weibull equation this results in:  
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and rearranging for T* : 
 

b

H
Ab

eT
































%100

11lnln)ln(

*

1

 

 
The delay must also be taken into account in this case. Generally, only the shape 
parameter b is of interest for the purpose of distinguishing between early failures, 
random failures and wear failures.  
 
Complete b and T corresponding to the standard Weibull plot, can be determined by 
constructing a Weibull straight line from the points of the contour for each production 
months. 
A so-called "b-Chart“ is now obtained by plotting the calculated b over the production 
period, providing an overview of the "production process“.   
 

 
 
The following additional information can be derived from the above diagram:  
The thick line in the middle shows the respective b of the overall Weibull progression 
of each production month. The thin curves represent two sections of the Weibull 
progression. The light green curve is the first section and the light blue represents the 
second section in the Weibull plot. 
If the light blue curve for the second section is now located below that for the first 
section, this indicates that the Weibull curve flattens off in upward direction and kinks 
to the right. Under certain circumstances this situation may indicate faulty batches. If 
the first section is below the second, the Weibull curve kinks to the left, i.e. it is steeper 
towards the rear. This is probably attributed to a mixed distribution that requires further 
investigation. Different failure mechanisms can then be expected.  
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The aim is to achieve the largest possible b and the lowest possible failure rate 
(corresponding to a steep straight line located far to the right in the Weibull plot). b<=1 
indicates the presence of chance and early failures, the "process" is not in order. A 
large difference between the smallest and largest b within a production month indicates 
a substantial curve in the Weibull plot. In such cases, it is advisable to produce the 
Weibull diagram for this period, which is easily possible following the described 
procedure.  
The Weibull plot can be produced directly based on the relative problems as "failure 
frequencies" and the respective vehicle age multiplied by the mean distance covered 
(mileage). From the mileage distribution, however, it is known that for each vehicle age 
50% of the vehicles have not yet reached the mean distance (mileage) at the time the 
data are taken. Problems can therefore be expected in connection with these vehicles 
with the same failure probability. In the same way as the prognosis calculation, this 
therefore results in "candidates". They are derived from the production quantity for the 
observed production month minus the vehicles already with problems multiplied by 
50%.  
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The forecast total failure frequency for the respective point is then:  

  %100/5,0%100 HHHHHH Anwges   

HH ges  5,1  

It should be noted that the data of the contours may contain double findings (repeated 
vehicle problems) that are undesirable in the Weibull evaluation. In addition, the fact 
that vehicles with a certain age do not all cover the same distance per month is also 
neglected (mileage distribution). Nevertheless, the Weibull plot observes the failure 
points referred to a specific kilometre value, resulting in a king of classification. If the 
classic Weibull evaluation is performed and compared with the described procedure, 
it will be seen that the actual failure points are far apart on the horizontal. This results 
in corresponding deviations in the comparison of the respective b-values. Strictly 
speaking, the candidates should also be taken into consideration when determining 
the individual b-values. However, since the candidates shift the failure level for all 
points upward by approximately the same relative frequencies, the b-values will 
change only insignificantly. For simplification reasons, the candidate calculation should 
therefore not be taken into account.  
 

Prognosis 

There are, of course, less contours the closer the production months are to the present 
date (because the vehicle age has not yet been reached). The number of points for 
determining b becomes less and less until there are only 2. Conversely, the contours 
can be projected for older vehicles based on the points with the youngest vehicle age 
together with the mean b. If, in addition to b, T* has also been determined, the projection 
for any vehicle age A can be obtained through the relationship already introduced: 
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The projections, however, are generally exaggerated through extrapolation of the best-
fitting straight line, i.e. the values are too high. The reason for this has less to do with 
mathematics but rather the trend towards the higher vehicle age is digressive in the 
majority of cases, e.g. because of the lack of data.  
Based on example, the following procedure is proposed for a prognosis. A deduction 
is to be made with regard to the problems expected for 10 year old vehicles.  
 
 
 
Step 1: Definition of a representative period for today's quality situation and that 
expected in the future in the contour diagram: 
 

 
 
Step 2: Transfer data section to Weibull plot and approximate linearised values with 
exponential function 

 

The linearised values can be approximated with the function  

XbeaY '''     or    
XbeaY /'''   

In contrast to forming the best-fitting straight line, in this case, the signs of the Y-values 
are negated to produce positive values. However, only progressions curving to the 
right can be approximated with the aid of this exponential function. The Y-values must 
still be inverted in the case of curves with curvature to the left (progressive curve): 
Y=c’-Y. The best value for c’ is generally the first linearised Y-value. The regression for 
determining the coefficients a’ and b’ then takes place with one of the above 
exponential functions. Accordingly, the functions for the recalculation are: 

XbeacY ''''     or    
XbeacY /''''   
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In this case, the unit for t should be months. However, the delay must also be taken 
into account as the production month is specified in the contour but the date of 
registration is required here.  
 

Step 3: Extrapolation with the determined function Y’ in the required time range (here 
10 years =  120 months). This results in a curve bundle from the extrapolations for 
each production month. The scatter or dispersion of the curves represents the range 
in which the expected problems will lie.  
 

 
Conclusions can be made with regard to the lifetime of the required spare parts with 
the aid of the projection (long-term prognosis or forecast).  

Life cycle costs (LCC) 

The total costs can be estimated depending on the warranty time or based on the life 
cycle costs. For this purpose, the respective production figures are additionally 
required for each production month. An average value per complaint/problem is 
generally used for the costs multiplied by the number of cases. This value contains the 
costs for the replacement parts, the replacement and incidentals, e.g. towing costs.  
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23.  Appendix 

Fundamental curve progressions 

Overview of the individual representation forms and their causes 
 

 

 
Steeper and steeper curve progression 
Disregard of replacement parts (spare 
parts) and their shorter running times 

 

 

 
Previous damage (negative to) 
Progression curving to the left 
Defects are now always caused by the 
operating period. However, fault only occurs 
after a certain period of time.  

 

 

 
Failure-free period to 

Progression slightly curved to the right, 
e.g. due to wear that becomes effective only 
after a certain running period 

 

 

Decreasing population 
Accidents and other effects decrease the 
number of population n (death rate). 
Approximately constant curvature. Handling 
with parameter k (3-parametric-distribution). 

 

 

 
Lack of data 
Lack of data because, for example, the 
warranty period has elapsed or because not 
all (candidates) have reached the same 
running time.  

 

 

 
Subset 
Only a subset of whole is affected by a 
failure, e.g. due to a defective batch for a 
limited period of time in production.  

 

      

 

 
 

Mixed distribution 
Simple or several noticeable changes in 
curve progression 

Table of critical values for Kolmogorov-Smirnov test 

The following critical values for the KS test originate from /16/. The data between 
21...24 and 26...29, were interpolated.  
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n  =0.1  =0.05  =0.01 

3 0.511 0.551 0.600 

4 0.449 0.487 0.548 

5 0.406 0.442 0.504 

6 0.375 0.408 0.470 

7 0.350 0.382 0.442 

8 0.329 0.360 0.419 

9 0.311 0.341 0.399 

10 0.295 0.325 0.380 

11 0.283 0.311 0.365 

12 0.271 0.298 0.351 

13 0.261 0.287 0.338 

14 0.252 0.277 0.326 

15 0.244 0.269 0.315 

16 0.236 0.261 0.306 

17 0.229 0.253 0.297 

18 0.223 0.246 0.289 

19 0.218 0.239 0.283 

20 0.212 0.234 0.278 

21 0.207 0.228 0.269 

22 0.203 0.223 0.263 

23 0.198 0.218 0.257 

24 0.194 0.214 0.252 

25 0.191 0.210 0.247 

26 0.187 0.206 0.243 

27 0.183 0.202 0.238 

28 0.180 0.199 0.234 

29 0.177 0.195 0.230 

30 0.174 0.192 0.226 

>30 n/96,0  n/06,1  n/25,1  
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Overview of possible cases 

Non-repaired units 

All components are used/ 
operated up to the point of 
failure. Defective compo-
nents are not repaired and 
not further operated. This is 
generally the case only in 
connection with lifetime 
tests. 
 
The quantity n required for 
the purpose of calculating 
the frequencies 
corresponds to the quantity 
of failures which is also the 
total number of observed 
units.  
 
Repaired units 

Following a failure, it must 
be possible to continue to 
use units that are in 
use/operation. This means 
defective components are 
replaced. In this case, it is 
necessary to take into 
account only the actual 
running times of the failures 
(referred to zero line). The 
calculation then takes place 
as described in the above.  
 

The quantity n required for the frequencies corresponds to the number of units 
including replacements. The total quantity originally produced therefore increases by 
the number of replacement parts. 
 
Incomplete data 
Simple case:  

All parts that have not failed 
have the same operating 
performance rating 
(mileage). 
The quantity n required for 
the frequencies 
corresponds to the number 
of failures plus the units still 
in use/ operation (= total 
number). 
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General case:  

This case involves failures 
and parts with different 
running times. Special 
calculation methods are 
required for this purpose that 
will be explained later. 
Another possibility is that the 
units are used at different 
starting points as is the case, 
for example, in current series 
production.  
The quantity n required for 
the frequencies corresponds 
to the number of failures plus 
the parts still running.  
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Failure 

None 

Failure 
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Running time 

Running time 



106   www.weibull.de 

Overview of distributions 

Frequency distribution / Histogram 

A frequency distribution shows the frequency of identical values. Let us assume the 
values listed in column A represent the diameter of a rotating shaft. All identical values 
are counted and the frequencies entered in the adjacent column B. 
 

A B 

9.98 1 

9.99  

9.99 2 

10  

10  

10 3 

10.01  

10.01 2 

10.02 1 

 
The values are combined to give on the right table:  
 

The mean value x is calculated using    
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where n represents the amount of data. With these data it is possible to determine the 
so-called Gaussian or normal distribution that is represented as a curve (bell curve). 
Great importance is attached to the normal distribution in practical applications. It 
represents the mathematically idealised limit case which always occurs when many 
independent random influences are added.  
 

The general density function is: 
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were 

H : Frequency (standardised to 1 in % times 100) 
s : Standard deviation 

x  : Mean  

K : Class width 

 
For the approximation of class data, it is necessary to extend the density function by 
the class width so as to correctly take into account the corresponding individual 
frequency, referred to the units.  

A B 

9.98 1 

9.99 2 

10.00 3 

10.01 2 

10.02 1 
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The data must be sorted in ascending order for representation purposes. Series of 
measurements with data lying very close together are often encountered in practical 
applications. Parameters with exactly the same value occur only very rarely or not at 
all. The frequency distribution would therefore determine each parameter only once. 
In such cases, classification is used, i.e. ranges are defined within which data are 
located, thus improving the frequencies. The classification is based on the formula: 
 

Value = rounding-off (value/class width) 

Cumulative frequency – Normal distribution 

The cumulative frequency also known as the probability plot represents the sum of the 
frequencies from the lowest value up to the considered point x. The cumulative curve 
is the integral of the density function. The normal distribution is expressed by the 
formula: 
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Concrete values are applied in terms of their frequencies above of the associated 
upper class limits as a sum total or cumulative value (see frequency distribution for 
explanation of classes). The values entered for the example from the frequency 
distribution appear in the probability plot as follows: 
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Compared to the frequency distribution, this representation offers the advantage that 
it is easy to read off the percentage of the measured values within each interval 
(estimation of percentage of failures outside the tolerance. In addition, it is very easily 
possible to show how well the values are normally distributed, i.e. when they are as 
close as possible or preferably on the cumulative curve.  
 

The frequencies in the probability plot are defined by /23/: 

    where    i  = Ordinal of the sorted values 

or by approximation with:  

%100
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H  

Note: The cumulative frequencies given by these equations do not result exactly in the 
cumulative individual frequencies as they are referred to probabilities in this case.  
An S-shaped cumulative curve is normally obtained between the points. The straight 
line obtained in this case is due to the fact that the ordinates have been 
correspondingly distorted logarithmically.  
The mean (here x  = 10.0) coincides exactly with the cumulative frequency of 50%. 

The range of  x   s is located at 16% and 84% frequency.   

In practical applications, the cumulative frequency is often represented relative to the 

scatter ranges of 1s, 2s and 3s. This simply means that the X-axis is scaled to the 
value of s and the mean is set to 0.  
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Log-normal distribution 

The log-normal distribution is a distribution that is distorted on one side and exhibits 
only positive values. A graphic illustration that a feature is not distributed symmetrically 
and that the feature cannot undershoot or overshoot a certain bound. A good example 
is the distribution of times that cannot be negative. Particularly when the distribution is 
limited to the left by the value 0, approximately normal distribution values can be 
achieved by taking the logarithm. The creation of a log-normal distribution may also be 
attributed to the fact that many random variables interact multiplicatively.  
The failure characteristics of components in terms of the classic operating strength 
(e.g. fatigue strength and reverse bending stresses and cracking/fracture fault 
symptoms), are generally best described through the log-normal distribution. In 
addition, the distributions of distances covered by vehicles are generally defined by 
log-normal distribution.  
The cumulative curve is the integral of the probability density. The log-normal 
distribution is expressed by:  
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Unlike many other distributions, the log-normal distribution is not included as a special 
case in the Weibull distribution. However, it can be approximated using the 3-
parameter Weibull distribution.  
 
The log-normal distribution such as the cumulative frequency is represented by the 
integral of the density function. Instead of the mean and the standard deviation, the 
median and the dispersion coefficient are of significance in connection with the log-
normal distribution. The median is derived through the perpendicular of the point of 
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intersection of the 50% cumulative frequency with the fitting line on the X-axis or 
analytically through: 
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The points of intersection with the 16% and 84% cumulative frequency do not 

correspond to the range for x   s as for the "normal" cumulative frequency, but rather 

they correspond to the range for median / dispersion factor and median * dispersion 
factor. 

        
 
 
The range between 10% and 90% is often represented instead of 16% and 84%. 
This is derived from: 

log28155,1

%50%10 10/
s

xx


      and    log28155,1

%50%90 10
s

xx


  

where 1.28155 is the quantile of the standard normal distribution for 10%.  
 

When determining the straight line analytically, it is derived only from the median and 
the dispersion factor. Visually, the points may in part lie on one side depending on the 
frequency values.  

These deviations can be reduced by implementing a Hück correction factor 
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As a result, the straight line becomes correspondingly flatter.  
The frequencies of the individual points are recommended in accordance with Rossow: 
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H    for n  6              and %100

25,0

375,0
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
n

i
H   for n > 6 

where   i  = Ordinal of the sorted X-values 
 

If the frequencies are already defined in percent, the straight line can only be 
determined using the method of the fitting line with linearised points.  
 

Weibull function 

The density function of the Weibull distribution is represented by:  
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were  
h =  Probability density for "moment" t  
t =  Lifetime variable (distance covered, operating time, load or stress reversal etc.)  
T =  Scale parameter, characteristic life during which a total of 63.2% of the units have failed  
b =  Shape parameter, slope of the fitting line in the Weibull plot 

 
The following curve is obtained for various values of the shape parameter b and a 
scaled T=1: 
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Great importance is attached to the cumulative frequency or the integral of the density 
function which expresses the so-called failure probability. With this function it is 
possible to determine how many parts have failed or will fail up to a defined running 
time.  
When represented in a linear diagram, an S-shaped line results over the entire 
progression which is not easy to read off. In its simplified 2-parameter form (see /1/ 
and /2/) the Weibull distribution function is: 
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b
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were  
H =  Cumulative failure probability or failure frequency  
     (scaled to 1, in % times 100) 
 
 

 
 
The S-shaped line is made into a straight line linearised best-fit straight line) by the 
distortion of the ordinate scale (double logarithmic) and of the abscissa 
(logarithmic).The advantage of this is that it is easy to recognise whether the 
distribution is a Weibull distribution or not. In addition, it is also easier to read off the 
values. The slope of the straight line is defined as a direct function of the shape 
parameter b. For this reason, an additional scale for b is often represented on the right. 
The slope can be determined graphically by shifting the straight line parallel through 
the "pole“ (here at 2000 on the X-axis).  
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There is also the 3-parameter form 
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where  to   = time free of failures  
 
In the majority of cases it is possible to calculate with to = 0 what the 2-shape parameter 
corresponds to. Despite being subject to stress load, some components behave such 
that failures occur only after an operating time to . In connection with this behaviour, 
the points above the lifetime characteristic are mostly curved to the right in the Weibull 
plot. In the case of the curve dropping steeply to the left, with to it is possible to imaging 
the point of intersection of the curve with the zero line which is in infinity on the 
logarithmic scale. The procedure for determining the time to free of failures it is 
discussed in a separate chapter.  
 
The so-called reliability is often used instead of the failure frequency: 
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It indicates how many parts are still in use after a certain running time and therefore 
have not yet failed. The Y-axis in the Weibull plot extends from top to bottom: 
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If failure frequencies are low, the specification ppm (parts per million) is also 
appropriate instead of the percentage. In this case 1% = 10000 ppm. 

Beta 

Supplies values of the distribution function for random variables with beta distribution. 
The distribution function (integrated density function) of a beta distribution is used to 
examine percentage fluctuations over several random samples taken at certain 
procedures. For example, it is possible to examine what percentage of a day certain 
people sit in front of the television. Further applications include processes with natural 
upper and lower limits. The probability distribution is: 

11 )1(
)(  




 




xxh  

x  : Variable  ( 0  x   1) 

 : Is a parameter of the distribution (1   ) 

 : Is a parameter of the distribution (1   ) 

 

Binomial 

The binomial distribution describes the number of defective units in random samples 
which are "put back". The number of defective units in the random sample can be used 
to monitor the share of defective units in the population. The probability density is: 
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x : Variable 
n : Scope 
p : Relative share of defective parts 
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Cauchy 

The probability density is: 
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x : Variable
= Median position parameter 

 = Theta scaling parameter 

 

² (Chi²) 

Supplies the values of the distribution function (1-) of a random variable with ²-

distribution. The ²-distribution is required in connection with a ²-test. The ²-test can 
be used to compare observed and expected values.  
For example, the hypothesis can be proposed for a genetic experiment that the next 
plant generation will have a certain colour configuration. By comparing the observed 
and the expected results it is possible to determine whether the original hypothesis is 
correct. The probability density is: 
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2/
)2/(2

1 x
exh



 

 
 

x  : Variable x > 0 

 : Number of degrees of freedom 

 

Exponential 

Supplies the probability of a random variable with exponential distribution. This 
distribution is used for the purpose of calculating the probability that a procedure 
requires a certain time between two events. A possible question, for example, could 
be: How long does a cash dispenser (ATM) require to issue money? You could, for 
example, calculate what is the probability that this procedure takes one minute. The 
probability density is: 

xeh    

x :Variable (x >= 0) 

 :    is the parameter of the distribution (lambda > 0) 

 

Extreme 

The extreme distribution is often used for the purpose of modelling extreme events 
such as the extent of flooding, wind speeds aircraft are confronted with, maxima of 
share indices etc. A further application involves reliability theory, e.g. representing the 
distribution of the failure times for electrical power circuits. The probability density is:  
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x : Variable 
a : Positional parameter 
b : Scaling parameter (b>0) 
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Fisher 

The Fisher or F-distribution supplies values for the distribution function (1-alpha) of a 
random variable. With this function it is possible to determine whether two data sets 
have different dispersions. For example, it is possible to examine the scores men and 
women achieved in a university acceptance test and consequently determine whether 
the scatter or dispersion found for women differs from that of men.  
If the variances s1² and s2² of independent random samples of the range n1 and n2 are 
from two populations with normal distribution and the same variance, the random 
variable will be  
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2
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2  

of an F-distribution with the degrees of freedom =n1-1 and =n2-1. 
 
The F-distribution is a consistently asymmetric distribution with a variation range from 
0 to infinity. The probability density is: 
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x : Variable( x  0 ) 

,  :  Number of degrees of freedom 

Gamma 

Supplies the probabilities of a random variable with gamma distribution. With this 
function it is possible to examine variables that have a skewed distribution. The gamma 
distribution is often used for the purpose of analysing queues. The probability density 
is: 
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x  :  Variable  ( x   0 ) 

 :  Is a parameter of the distribution (  > 0 ) 

 :  Is a parameter of the distribution (  > 0 ) 
 

Geometric 

The geometric distribution is used for establishing, for example, the service life of a 
device up to the first time a fault occurs or the period of time a certain customer files a 
claim for the first time with his/her motor vehicle insurance or the time or unemployment 
until a person is employed again. The geometric distribution is a discrete distribution, 
i.e. it applies only to integer arguments (x). The probability density is:  

1)1(  xpph  

x  :  Variable, integer 
p  :  Probability of a favourable event ( 0 < p < 1 ) 
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Hypergeometric 

The hypergeometric distribution is used instead of the binomial distribution when 
samples are taken (without putting back). This distribution is often used in connection 
with problems concerning quality monitoring. The hypergeometric distribution is a 
discrete distribution, i.e. it applies only to integer arguments. The probability density is: 
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x  : Variable, the number of successes achieved in the sample 
N : The scope (size) of the population  
M : The number of successes possible in the population  
N : The scope (size) of the sample  
      All parameters are integers 

Laplace 

The probability density is: 
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x  : Variable   
a : Mean  
b : Scaling parameter 
 

Logistic 

The probability density is: 
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x  : Variable   
a : Mean 
b : Scaling parameter 
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Truncated or folded normal distribution 

The so-called truncated normal distribution results by folding the negative half onto 
the right-hand side 

Pareto 

The probability density is: 

1
cx

c
h  

x  : Variable  ( x  0 ) 
c = Parameter ( c < 0 ) 
 

Poisson 

The Poisson distribution describes the number of defects in random samples when the 
defects occur independently. Several defects in a unit are possible. The number of 
defects in the random sample can be used for the purpose of monitoring the mean 
number of defects per unit in the population. The Poisson distribution is a discrete 
distribution, i.e. it applies only to integer arguments (x). The probability density is: 
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 : Mean (>0 ) 
 

 
 

Rayleigh 

The Rayleigh distribution is used, for example, in connection with offsets or 
eccentricities. The probability density is:: 
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x : Variable ( x >   ) 
b = Scaling parameter ( b > 0 ) 

 = Positional parameter 

 

Student 

The t-distribution is very similar to the normal distribution. However, it does not depend 

on  and . The shape of the t-distribution is determined only by the degree of freedom 

=n-1. The t-distribution approaches the normal distribution the greater is. The main 
application of this type of distribution is the comparison of mean values of various 
samples. The probability density is: 
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x : Variable 

 : Degree of freedom 
 

 

Symbols used in formulae 

Variable Definition Description 

A Age/vehicle age Or operating time 
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AD Availability Also permanent availability of 
components 

b Shape parameter in Weibull Slope of the best-fitting straight line 
in the Weibull plot 

f Degree of freedom For statistical tests  

Fk Corrected failure cumulative 
frequency 

Prognosis calculation 

Fan Candidates, cumulative frequency Prognosis calculation 

H Generally frequency or failure 
frequency 

Mostly in % 

i Ordinal Generally: consecutive index 

k Number of classes  

k Slope in the stress-cycle (Woehler) 
diagram 

 

Kbr Class width  

LproM Distance (mileage) per month  

Lv Service life ratio  Referred to required service life 

 Failure rate  

MTTF Mean time-to-failure Corresponding to expectation value 
tm 

MTBF Mean operating time between failures  

MTTR Mean time-to-repair  

N Number of alternating stress cycles Woehler  

ND Number of alternating stress cycles in 
which fatigue strength begins 

Woehler 

n Number of defects, parts, random 
samples or degrees of freedom 

Generally: Number of parts 

Nan Number of candidates Prognosis calculation 

x  Generally mean of sample 




n

i

ix
n

x
1

1  

x Class width Generally: Step width 

 Mean of population   

p Success probability  

PA Confidence level  

R Range  R = xmax – xmin 

R Reliability 1-H 

s Standard deviation  Special form for Weibull 

s² Variance of sample Special form for Weibull 
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 Standard deviation of population Special form for Weibull 

² Variance of population Special form for Weibull 

 Component stress Woehler 

D Component stress, from which fatigue 
strength occurs 

Woehler 

t Life variable in Weibull Distance, operating time, 
alternating stress cycle etc. 

tm Expectation value/mean for Weibull  

to Failure-free period  

T Characteristic life in km or alternating 
stress cycles 

For 63.2% failure frequency 

T* Characteristic life in months For 63.2% failure frequency 

V Confidence bound  

w Weighting Number of defined value 

 Significance level for statistical testing The transfer parameter alpha is 

alpha = 1-  or 1 - /2 for two-sided 
tests 

X Variable X diagram   

X1..X3 Reference point  For distance (mileage) distribution 

Y Variable Y diagram ordinate  
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24. Most important formulas 
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