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Software  
 
For the methods and procedures, which are shown here, the software Visual-XSel is used. 
 

 
 
For the first steps use the icons on the start picture and follow the menus and hints. There 
are also templates with examples. 
 
Visual-XSel goes much further than other standard programs with many important topics, 
such as reliability methods & Weibull, as well as Design of Experiments (DoE) and data 
evaluation. 
Some method like hypothesis tests are profided through templates. Those files marked in 
italics in the overviews and descriptions in blue represent these presentations. The proce-
dure is always the same: Put your data into the table (marked often with yellow back-
ground) and start the program with F9. The results are shown then in the main window 
 
 
For more information, please goto www.crgraph.com 
 
Please ask for a test version via info@crgraph.de 
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1. Test methods 
 
Under test methods there are statistical methods to understand which were developed for 
example through Taguchi /3/. These are also known under the system optimization. 
 
The goal is to find the most important influences in technical or other processes, with a min-
imum of parts and tests. 
The products and their productional processes can be improved decisively with these mostly 
very simple methods.  
  
In the following descriptions there are no derivations of the formulas. The priority is much 
more the application for the practice. On further-reaching information the literature is there-
fore referred. 
 
 
The following issues are treated: 
 

 Taguchi strategy and experiments 

 Standard experiments and D-optimal 

 ANOVA (Variance – analysis) 

 Statistical diagrams and special charts 

 Correlation and regression 

 Multiple Regression (stepwise regression) 

 Multivariate analyses 

 Statistical tests and evaluations 

 Statistical distributions 

 Optimization 
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Intensity-Relation-Matrix 

 
In a so-called Intensity-Relation Matrix it is the point that the decisive factors for a later in-
vestigation should be found, or to reduce the quantity of parameter to the essential ones for 
an experimental design. 
At first the entry of factors 
with their designations takes 
place vertically in a table. 
The same factors have to be 
entered horizontally in the 
first row. The particular ef-
fects of the factors have to 
be enlisted in the first col-
umn on the factors with the 
same sequence in the first 
row.  
 

 
 

 
 
Normally the values for this are estimated by experts or specialists. Possibly the numerical 
values can be weighted. In a diagram the active summations are spread over the passive 
summations after a valuation and parts the diagram shares in four big areas. Those depict 
the active and passive, as well as the critical and reactive field. 
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For further experimental designs the factors in the active field as well as in the critical field 
have to be taken into account. Generally, here it is a matter of possible reciprocations. It is 
possible to renounce the factors in the passive field. The factors in the reactive field can also 
be performed in the treatment as sub-target factors, which will not be varied in further exper-
imental designs.  
 
This method can be executed directly via the menu statistics/Intensity-Relation-Matrix inside 
the spreadsheet.   
 

Priority Matrix 
 
Different criterions or characteristics are compared in the Priority matrix together and a rank-
ing was formed. The result can be used also for importance’s of the criterions for continuing 
evaluations 
  
No quantitative measurements are necessary for the comparisons of the characteristics. The 
test is just a pair-wise comparison and an estimation of experts. 
 
For example: The importance’s should be determined for a later comparison of different 
technical solutions. The characteristics are function, reliability, weight etc. Each criterion has 
to be compared with each other. That one which is more important gets the number of the 
criterion (order number in the row). In the first comparison, the function 1 is more important 
than function 2. Therefore, in row 2 of column 1 is the number of functions 1. The next step 
is the comparison of function 1 with the reliability. 
 

 Characteristic 1 2 3 4 5 6 7 8 9 10 

1 Function1           

2 Function2 1          

3 Reliability 1 3         

4 Weight 1 2 3        

5 Required space 1 2 3 5       

6 Temperature-constancy 6 6 6 6 6      

7 Media-constancy 7 7 7 7 7 6     
8 Environment-compatibility 1 2 3 8 8 6 7    

9 Montages 1 2 3 4 5 6 7 8   

10 Manufacture 1 2 3 4 5 6 7 8 10  

11 Costs 1 11 11 11 11 6 7 8 11 11 

 
 
The column 2 refers on the evaluation of the function 2 opposite each other criterion. The 
reliability is more important than function 2. Therefore, in column 2 is the number of the 
reliability with the value 3. 
 
Now you add up the occurring numbers for each criterion and get the ranking. In this case 
you can see the following Pareto-Chart. 
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Each result should be increased of 1, because it is not meaningful to get values with zero (if 
the results are importance’s and you multiply this with other evaluations, you will get also 
zero), the other point is that in the Pareto-Chart a zero value is not visible. 
 
This method can be executed with help of the template file Priority_Matrix.vxg  
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Matrix diagram 
The so called “matrix diagram” is just a representation of a matrix, not really a diagram. 
However, through an assessment of the rows and columns between each other, there is 
built a structure.   
In the following example the task is to show which method (the first column) is suitable for 
which use case (the first line).  

 

It is possible to use other items, titles or meaning. The mutual relations are described here 
as numerical values between 1 and 3. No connection means empty fields or 0. Leaving out 
0 has the big advantage that the representation becomes clearer (pattern). Note: The differ-
ence is to intensity relation matrix is the titles of the first row are identical with the first column 
(mutual comparison). 
Another evaluation is possible by the row-by-row summation (who brings most points). 
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2. Analysis of Variance (ANOVA) 

The Analysis Of Variance (ANOVA for short) is about determining the variance of groups 
(factors) against the unexplained variance (residual variance) and „confirming“ or rejecting a 
significant influence. 
Historically, the ANOVA was the evaluation tool for Design of Experiment (DoE). Alterna-
tively, regression methods can usually do more.   

The ANOVA is used to determine whether the factors in relation to the scatter (dispersion) 
have a significant effect on the response. 

The known methods of ANOVA are diverse. Only the most important procedures are de-
scribed in this documentation. 
In general, an analysis of variance (dispersion decomposition) is carried out in an ANOVA in 
order to differentiate systematic influences of factors (treatment) from a random dispersion. 
The general model is: 
 

Total dispersion          =   Factors disp.      +   Error dispersion 

 

SSTotal                      =      SSFactors            +        SSError 
      

      
 

 
 

 
 
 
 
 
 
 

 
The variance  =  Mean Squares MS  is the sum of squares based on the degrees of free-
dom. Here is z = number of factors and n = number of observations: 
 

 
 
 
 

 

For a significant test now, the MSFactors are divided through MSError and it is: 
 

Error

Factors

MS

MS
F   

 

The bigger the F-value, the higher the probability of the factor effect. The null hypothesis Ho 
is: The means of the factors do not differ from one another. Ho is rejected if the probability 
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from the F-distribution with degrees of freedom f1 = z-1 and f2 = z (n-1) is less than the sig-

nificance level  
 

The so-called coefficient of determination R² describes how much the effect of the factors is 
in the model. The maximum is R²=1. The bigger the scatter the smaller is the R². 
    �� = 1 − ���		
	���
�
�   
Balanced One-Way ANOVA (µ1 = µ2 = µ3…) 

The null hypothesis is for several data columns of the same size 

   µ1 = µ2 = µ2 = …  

The prerequisite for this test is that the data series are normally distributed. The variances 
must be the same, which can be checked using the F-test. Alternatively, the t-test is possi-
ble, with which different variances are possible. The data series must be independent of 
one another. For the following example we want to test the null hypothesis that all mean 
values are equal. 
In the following the Sum of Squares SS and Degrees of Freedom = DF are calculated with: 

 

 

 

 

 

  

Table of results: 
 

   DF   SS   MS F p-val 

Factors   2   63,7 31,85 10,50 0,0023 
Error 12   36,4   3,03   

Total 14 100,1     
 

The p-value is determined via the Fisher-distribution with:   
p-value = 1 −  ���ℎ����; �1; �2�   =  1 − ���ℎ���10,5; 2; 12 � =   0,0023   ;   �1 = ��� !"#$%  ;   �2 =  ��&$$#$ 
Since the p-value falls below the specified significance level of  = 0.05, the null hypothesis 

that the mean values are equal has to be rejected. 

Balanced Two-Way ANOVA 

In contrast to the one-way ANOVA, there is a response variable y in the two-way that affects 

the factors. The aim here is to determine a relationship between the factors and the re-

sponse. The factors must have the same number of observations (balanced), must be inde-

pendent of each other, have comparable scatter, and have to be normally distributed. 

 A B C  
 1,0 4,0 5,5  

 1,5 5,5 6,5  

 2,5 6,0 8,0  
 4,0 7,0 9,0  

n 5,0 9,0 9,5  '( 2,8 6,3 7,7 ') = 
5,6 

**+#" , =   - - .'/,� − '01 ² 3
�=1

4
/=1 = 100,1 

 **� 5"#$% = 3 ∙ �'7 − '0�2  =   5 ∙ 12,74 =   63,7   **&$$#$ = **+#" ,  −  **� 5"#$%  =   36,4 

 ��+#" ,    =   3 ∙ 4 − 1 =   14     
 ��� 5"#$% =   4 − 1 = 2  
 ��&$$#$     =   ��+#" , − ��� 5"#$%  =   12  

z 
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For this the variance analysis is: 
** ;% =  13 <- '=

>
=?@ A�       **+#" ,  =   - '=�

>
=?@  −  ** ;%    

**B =   1CD  - '(=�  −  ** ;%
 

=?@  

**E =   1FD - '(G�  −  ** ;%
;

G?@  

**BE =   1D - - '(G=�    ;
G?@

 
=?@ − **B −  **E − ** ;%  

 **&$$#$    =   **"#" − **B −  **E −   **BE    
The results for a two-factor example with the influences of an additive and the temperature 

on a process (variable of response) are generally output in the tabular form shown. The F-

value is the ratio between the variance (mean square) of the factors and the interaction with 

the variance of the dispersion (error). From this the probability of error (p-value) is deter-

mined via the F-distribution: 

  
DF SS MS F p-val 

Additive 3 2,608E+02 8,692E+01 4,99 0,008 

Temperature 2 8,029E+02 4,014E+02 23,05 0,002 
Additive * Tempera-
ture 

6 3,340E+02 5,567E+01 3,20 0,019 

Error 24 4,180E+02 1,742E+01 
  

Total 35 1,816E+03 
   

 

 

Balanced Two-Way ANOVA Random 

Random factors have randomly selected levels, while the levels of fixed factors e.g., have 

been established by a DoE. The following example resulted in temperatures that were not 

systematically specified. 

Instead of relating the variance MS of the additive to the variance of the error MSError, the 

variance of the interaction is used here: 

 

 

n :  number of observations 

a  :  number of variations of factor 
A  

b  :  number of variations of factor 
B 

k :  number of repetitions '(=   :  mean of the i-th factor level of 

factor A '(G  :  mean of the j-th factor level of 

factor B 
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 DF SS MS F p-val Typ 
Additive 3 2,61E+02 8,69E+01 1,56 0,294 fix 
Temperature 2 8,03E+02 4,01E+02 10,5 0,017 random 
Additive * Temperature 6 3,34E+02 5,57E+01 3,2 0,019  
Error 24 4,18E+02 1,74E+01    
Total 35 1,82E+03     

 

This procedure is used in the Measurement System Analysis with ANOVA according to VDA 

Volume 5. The parts used for the repeatability and the appraisers are random and not the 

same, e.g., like for a later determination of a process capability. 
 

Nested Two-Way ANOVA  

In a so-called nested ANOVA, there is a factor that cannot be freely combined. All factors in 

the model must be random factors. In this example, the temperature is generated by different 

heating processes in an oven. Each temperature level is therefore nested in the additives. 

Instead of referring the variance MS of the additive to MSError, the second nested factor tem-

perature is used here. 
  

 DF SS MS F p-val 
Additive 2 8,03E+02 4,01E+02 6,075 0,022 
Temperature 9 5,95E+02 6,61E+01 3,794 0,004 
Error 24 4,18E+02 1,74E+01   
Total 35 1,82E+03 

   
 

The last factor is now based on MSError. 

A nested ANOVA is used in particular in the measurement system analysis when the parts 

that are actually to be measured repeatedly must always be different due to destructive tests. 
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3. Design of Experiment  

Design 

After definition of factors the design or the type of the experimental design is fixed. As model 
Linear, Interaction, quadratic and Cubic are standard plans. The orthogonal experimental 
design according to Taguchi is just available for the linear model, because interactions are 
mixed with each other. 
 
 

Type Attitude Remark 

  Linear  
Y = bo+b 1 x1 +  b2 x2.  

Factors on respectively only 2 
steps,  
min number of tests p +1*  

No nonlinearities and interac-
tions determinable  

  Change  
effects  
Y = . b 4 x1 x2 . ...   

Factors on respectively only 2 
steps,  
min number of tests  
p+p (p 1)/2+1 *  

No nonlinearities determina-
ble,  
but interactions  

  Square  
Y = .b4 x1 ^ 2.  

Factors on respectively only 3 
steps  
min number of tests  
2 p+p (p 1)/2+1 *  

Nonlinearities recognizable.  
Incl . interactions  

  Cubic  
Y = . . b4 x1 ^ 2 +b5 x1 
^ 3 ..   

Factors on respectively only 4 
steps, min number of tests  
3 p+p (p 1)/2+1 *  

Curses of curve with turning 
point recognizable, incl . in-
teractions  

p = number of factors, min = number of tests related to D optimal  
 

According to the choice the required terms are added in a list on the left. Terms can be 
deleted again, too, e.g., if it is known that certain interactions do not happen. The following 
design types can be chosen:  
 

  Full  
      factorial 

All combinations,  
full orthogonal  

High number of tests, effortful  
best evaluable   

  Fractional Half or a smaller number of tests 
like full factorial, full orthogonal  

Mixing of interactions  
Unsafe of evaluation  

  Plackett       
      Burmann 

Derivation from fractional de-
sign. Very low number or tests. 

Interactions are not fully con-
founded 

 DSD Definitive Screening Designs 
Very low number or tests on 3 
levels 

Quadratic model possible, 
interactions are confounded 
only partially 

  Taguchi Very low number of tests,  
multiple fractional  
full orthogonal  

Many interactions mixed with 
each other and with factors; 
suitable only for regulation of 
individual factors  
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  Central 
       Composite 
       Design       

The same construction as full-
factorial plus cross in the mid-
dle. Test space like a ball  

High number of tests, effortful  
good evaluable  

 Box- 
       Behnken 

Evaluation for quadratic models. 
Middle levels in outlet area. 

High number of tests, effortful  
good evaluable 

  D-Optimal Low number of tests,  
Clear regulation of interactions,  

not orthogonal  
good evaluable   

  Mixture Use of factors whose sum must 
always amount to 100%  

not orthogonal, factors de-
pendent on each other  
good evaluable   

 
Coexistent with the model and type selection the number of so-called candidates and the 
number of needed trials is shown beneath. The candidates always correspond to those of 
the full factorial experimental design. So, for a squared model with 3 factors 3^3=27 trials 
are needed. In addition, also a central point with the middle values and repeats can be cho-
sen. For this see options. 
 

Fullfactorial design 
 

A full factorial test plan is made if all possible attitudes 
of the factors are combined with each other.  
The number of tests required can be calculated 
through:  

pn 2  
 
At 3 factors, 8 tests 
arise. Simply one gen-
erally prepares a full 
factorial plan (-1 and 1 
standardize) in the following way:  
 
It is the advantage of the complete test plan that all interac-
tions can be explained. So, the influence of A*B*C is just as 
contained. The number of tests increases with the number of 
factors, however, very strongly fast, so that the test plan gets 
too effortful beginning at 5 factors. The question how one 
can simplify it arises.  
 
This plan is full orthogonal 
 
 
 
 

 

 A B C D E F 

1 -1 -1 -1 -1 -1 -1 

2 1 -1 -1 -1 -1 -1 

3 -1 1 -1 -1 -1 -1 

4 1 1 -1 -1 -1 -1 

5 -1 -1 1 -1 -1 -1 

6 1 -1 1 -1 -1 -1 

7 -1 1 1 -1 -1 -1 

8 1 1 1 -1 -1 -1 

9 -1 -1 -1 1 -1 -1 

10 1 -1 -1 1 -1 -1 

11 -1 1 -1 1 -1 -1 

12 1 1 -1 1 -1 -1 

13 -1 -1 1 1 -1 -1 

14 1 -1 1 1 -1 -1 

15 -1 1 1 1 -1 -1 

16 1 1 1 1 -1 -1 

17 -1 -1 -1 -1 1 -1 

18 1 -1 -1 -1 1 -1 
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Fractional design 

The triple interaction has only a small influence in most 
cases. Concerning this statement, one can put another 
factor instead of the combination which contains A*B*C 
and then one receives a fractional test plan. In this case 
the plan is the half size of the full-factorial plan with 24-1.  
It is the disadvantage of this test plan that no more tri-
ple interactions are determinable and two-factor inter-
actions are confounded with each other: AB with CD, 
AC with BD and AD with BC, because the respective 
column products are identical. For a product with at least 4 columns, e.g., F=ABCD two-
factor interactions aren't confounded any more. These plans have a so-called resolution of 
at least V. In general, the number of tests is calculated through 

12  pn  

One builds this factorial design at first like the full-factorial plan, but with q factors less. The 
attitudes of the missing factors q are generated by the product of all previous columns. One 
also calls these columns "generators". The following table shows an overview for 12 factors: 
 

n      p 2 3 4 5 6 7 8 9 10 11 12 

4 22 
fullfact. 

23-1 

III 
         

8  23 
fullfact. 

24-1 

IV 
25-2 

III 
26-3 

III 
27-4 

III 
     

16   24  
fullfact. 

25-1 

V 
26-2 

IV 
27-3 

IV 
28-4 

IV 
29-5 

III 
210-6 

III 
211-7 

III 
212-8 

III 

32    25  
fullfact. 

26-1 

VI 
27-2 

IV 
28-3 

IV 
29-4 

IV 
210-5 

IV 
211-6 

IV 
212-7 

IV 

64     26  
fullfact. 

27-1 

VII 
28-2 

V 
29-3 

IV 
210-4 

IV 
211-5 

IV 
212-6 

IV 

128      27  
fullfact. 

28-1 

VIII 
29-2 

VI 
210-3 

V 
211-4 

V 
212-5 

IV 

 

 Full factorial          -> all interactions are evaluable 

 Fractional plans   -> all two-factor interactions evaluable   V 

 Fractional plans   -> two-factor interactions mixed, resolution < V 

 
All fractional plans with resolution V or more are uncritically in the evaluation. Also, here 
the effort rises up excessive over a number of 6 factors. Therefore D-optimal test plans at 
which all interactions can always be found out then can be recommended. Plans with reso-
lution less than V gets smaller size but can be used only for searching the most important 
factors, because interactions are confounded. One also calls this Screening.  
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Resolution III Design  
Main effects are confounded (aliased) with two-factor interactions.  
 

Resolution IV Design  
No main effects are aliased with two-factor interactions, but two-factor interactions are ali-
ased with each other.  
 

Resolution V Design  
No main effect or two-factor interaction is aliased with any other main effect or two-factor 
interaction, but two-factor interactions are aliased with three-factor interactions.  
 
With using D-Optimal plans there is still the chance to determine all interactions by the 
same size of trials like for resolutions < V (see the following chapters). 

Plackett-Burman-experiments 
 

Especially Plackett-Burman-Experiments are suitable for preliminary investigations or so-
called Screening-plans (only 2 levels). These test plans are derived from fractional plans and 
can be constructed in steps by 4 tests. With 12 tests there can be determined 11 effects 
(factors). Nevertheless, it is recommended not to use at least two columns with factors. 
Plackett Burman-test plans have compared with the classical fractional plans (resolution III) 
the great advantage that interactions among each other and with other factors are not com-
pletely confounded. For plans with 12 tests and 11 factors a max. correlation of 0,333 arises 
for two-factor interactions. An evaluation via multiple regression is here normally not a prob-
lem. For plans with 20 tests and 19 factors a max. correlation of 0,6 exists. This can be 
critical to determine interactions. Under circumstances this correlation is too high for evalu-
ations of interactions, in particular if high scatter is given. Indeed, an additional security is 
given by the evaluation with the method PLS which is non sensitive against correlations. 
 
But there are in each case no confounding’s between the factors. 
 
After evaluation with the stepwise regression ordinarily fall out a greater number of 2-factor 
interactions. Plackett Burman-test plans thereby advantageous when an evaluation should 
be done before of unknown interactions, but the test expenditure must be very small. Con-
firmation tests are to be recommended, in any case. 
The creation of the plans occurs through the following pattern: A combination order which is 
repeated column for column around a line down moved is used in each case. The pattern is 
depending on n: 
 
    

n=12 + + - + + + - - - + -              

n=20 + + - - + + + + - + - + - - - - + + -      

n=24 + + + + + - + - + + - - + + - - + - + - - - -  

 
 
The last field is absent. After cyclic joining together of the columns the surpluses about the 
line n-1 are added on top again. The last missing line is taken with continuously -1. 
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Orthogonality 
All full-factorial and fractional plans are orthogonal.  If there are the factors independent from 
each other and the correlation coefficients are 0, the plan is full orthogonal. Every factor can 
have values without changing the attitudes of the other factors. This isn't the case in the right 
representation. B cannot be changed independently by A. If the plan is not quite orthogonal, 
e.g., due to a central point, then the evaluation is still possible with the calculation via matri-
ces. At the same deviation of the Y values, the confidence intervals are, however, wider than 
at orthogonal plans. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taguchi 
Taguchi plans are, fractional test plans which still more interactions are covered with fac-
tors. e.g.:  
 

472 

 
 

Through this one needs a very low number of tests. A mixture of 
factors with interaction also arises from it. Therefore, these plans 
only are recommended if interactions cannot be expected. This 
plan is full orthogonal. 
The plans are marked by Lx in which x is the 
number of tests. These plans are appropriately 
orthogonal. 2 examples of orthogonal combina-
tions to Taguchi represent the following plans: 
 
Instead of the standardization -1 ... 1 
the attitudes are numbered 
 
 

L4 (23)L4 (23)

L9 (34)L9 (34)

 

A B 

C 

- 1 

1 1 

1 

A B

C
-1

11

1

orthogonal not orthogonal 
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Full-factorial quadratic 
In the previous test plans only, linear relations can be explained. In many cases, however, 
there are nonlinear relations. To take this 
into account, one additional information each 
is needed in the test plan. For standardized 
factor attitudes the levels will be therefore -1, 
0, 1. The shown picture illustrate the atti-
tudes without the combinations for detecting 
the interaction. The necessary number of 
tests are: 

p
n 3  

The model formation by square terms is in 
some cases not satisfying. Square terms have 
the quality that they can produce a maximum or minimum in the used range which not exists 
in reality. The search for the optimal point then would lie in the bill minimum instead of in the 
edge area of the course falling in reality steadily. The corresponding data for this factor 
should be logarithmic. Through this a bent curve which doesn't show any maximum or mini-
mum is produced. Since perhaps the curse of curve, however, isn't shown well enough, the 
square terms should remain nevertheless contained in the model and perhaps be removed 
only at the evaluation due to the significance (p-value). At the evaluation the logarithmic 
transformation must be taken into account in the coefficient (Y = bo +b1 · ln (x1) +b2 · ln (x1) 
²+). Another problem can be that the won model equation allows negative values (Y) which cannot 

be reached in the reality. The logarithmic transformation   helps also here. 

 

 

 
 

  

A B 

C 

real curve 

curve of quadr. model 

fictitious 
minimum 
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Central Composite Design 
A central composite design consists of a full-factorial terms and a centric star. The shown 
representation applies to the order of a plan with 3 factors.  
 

 
 
The purpose is the attainment of a roughly spherical test room in which the central point is 
repeated. As a rule, at a standardized orientation -1 .. +1 the star has an extension of   
 

.  
 

Those plans are also called Central Composite Circumscribed (CCC). Plans with  = 1 is 
also as Central Composite Face (CCF) plans described 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The evaluability of this type of experiment is very good, however, is even bigger than full 
factorial. 
 

  

  

2



22  ©  C. Ronniger  2025 

 

Box-Behnken design 
The essential characteristic of the Box-Behnken design is that the middle levels lie in the 
respective middle of the edge area. Additional there are a center point. With this a square 
model (non-linear) can be determined (3 levels). Box-Behnke test plans are not derived from 
fractional designs. The missing corners are ca be advantageous for tests where these ex-
treme combinations are not adjustable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Box-Behnke test plans can be turned approximately. Under 45° one identifies in the picture 
on top a CCD plan. In the left table a Box Behnke design (not rotated) is compared with the 
CCD- design. In the Box-Behnke design a little bit fewer tests are required. If one used in 
the CCD plan correct-wise 3 central points, the difference precipitates even greater. 
 

  
CCD Box-Behnken 

x1 x2 x3 x1 x2 x3 

-1 -1 -1 -1 -1 0 

1 -1 -1 1 -1 0 

-1 1 -1 -1 1 0 

1 1 -1 1 1 0 

-1 -1 1 -1 0 -1 

1 -1 1 1 0 -1 

-1 1 1 -1 0 1 

1 1 1 1 0 1 

-1,4 0 0 0 -1 -1 

1,4 0 0 0 1 -1 

0 -1,4 0 0 -1 1 

0 1,4 0 0 1 1 

0 0 -1,4 0 0 0 

0 0 1,4    

0 0 0    
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Definitive Screening Designs 
DSD 
So-called Definitive Screening Designs are very 
new test plans developed by Jones and Nachts-
heim with a very small number of experiments.  
They enable the evaluation of quadratic models 
and are therefore based on 3 levels. There is 
no confounding (orthogonal) between the main 
factors among themselves and the quadratic 
terms. The interactions are not 100% con-

founded (no correlation). 
But there are not 
enough experiments to 
solve all possible interactions and 
the correlations r > 0.5. 
 
In the generic generation of these designs (iteratively using the de-
terminant), the number of tests is  
 

n = 2*p+1+(2) 
 

(if the number of factors is odd, two lines without 0 are additionally 
required).  
 

If you want to be able to evaluate interactions in general, a further variant is to build up the 
DSD basic plan with more columns than required factors, but not to use the last column(s). 
These experimental designs mentioned here as DSD IA have significantly fewer experi-
ments than a  
D-optimal from 6 factors. However, these are usually sufficient for the significant interac-
tions remaining in the evaluation. The following overview shows the number of attempts 
compared to D-Optimal (see next chapter) 
  

No A    B  C  D  
1  0_  1_ -1_ -1_ 
2 0_ -1_ 1_ 1_ 
3 -1_ 0_ -1_ 1_ 
4 1_ 0_ 1_ -1_ 
5 -1_ -1_ 0_ -1_ 
6 1_ 1_ 0_ 1_ 
7 -1_ 1_ 1_ 0_ 
8 1_ -1_ -1_ 0_ 
9 0_ 0_ 0_ 0_ 

C 
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D-Optimal experiments 

Fundamentals 
 

The aim of D-Optimal plans is with minimum effort to 
prepare test plans which show the desired effects and 
interactions definitely. This is, a decisive advantage 
over the fractional design where interactions are con-
founded with each other partly.  

With p = number the number of simple interactions 
charges itself to factors:  
 
p’ = p*(p-1)/2 
 
As a rule, the higher interactions (e.g., ABC, ABD, ACD etc.) are not taken into account since 
its influence is usually less opposite the simple ones. You also would blow up the size of the 
tests.  
 
Altogether, the following number of tests is needed for a test plan with two attitudes:  
 
Constant     : 1  
Main effects (factors)   : p  
Interactions      : p’ = p*(p-1)/2 
 
Sum     : p+ p*(p-1)/2+1 
 
In the case of a square model there are still one time p tests (with a middle attitude). Fur-
thermore, gets approximately 5 tests needs to receive sufficient information about the 
spreads (significances of the factors).  
 
A D-Optimal plan is not generated with a firm scheme but built up iteratively. It has among 
others the following important qualities:  

 Maximization of the determinant (indicator for evaluability)  

 Minimization of the correlations and confidence intervals  

 Balanced levels (as good as possible) 
 
Due to the target that all interactions shall be recognized at a low-test number prevents 
particularly that these plans are orthogonal completely., i.e., certain correlations cannot be 
removed completely. This is, however, a subordinate disadvantage in the evaluation about 
Multiple Regression.  
 
 
Advantages of the D-Optimal test plans  

 

 Free choice for the number of the steps per influence factor. The number of levels 
can be elected factor by factor differently.  

 Free choice of the step distances which can equidistantly or not be chosen equidis-
tantly.  
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 Free choice for the distribution of the test points in the n dimensional test room  

 Free choice of the mathematical model  

 Expansion capability by new influence factors  

 Certain attitudes and combinations can be excluded,  
these are not attainable  
 

 
Disadvantages of the D-Optimal test plans  
 

 The test plan is not orthogonal, however, the deviations are usually only small  
 
 

Mixture experiments  
Being indicated in the shares in % at experiments at which it e.g., is about mixtures from 
chemical liquids. The factors are what in normal test plans, are the different components in 
mixture plans. All shares must show in sum 100% what leads to the following term  
 
x1 + x2 + ... xk = 1  k = count of components 
 
and mean that the components are dependent on each other. This e.g., must be taken into 
account for the respective tests and can't be treated by standard test plans (only with effort). 
The possible quota combinations lie in an equilateral triangle.  
In most cases there are 3 components. The corresponding test plan looks like represented 
on the right in comparison with the "conventional" one:  
 

     
 

Full factorial                Mixed  
 

 
Combinations must be within the range represented grayed. At k=4 components = the pos-
sible combinations lie in a tetrahedron. Simplexes are called triangle, tetrahedra and the 
corresponding arrangements at more than 4 components, the mixture plans are therefore 
also described as a simplex-plans. For the regulation of only the "main effects" a plan is a 
so-called type "grade 1" uses. This corresponds to a linear test plan.  
 

 

A 
B 

C 
 

A 
B 

C 

1,0,0 0,1,0 

0,0,1 



26  ©  C. Ronniger  2025 

 

 
 
 
 
 
 

 
 
A test plan of the type grade 2 shows the following combinations (in addition with use of all 
components in the last line):  
 
 
 
 
 
 
 
 
 
 

 
 
Interactions and nonlinearities can hereby be detected. The next level is grade 3, what is 
shown in the following table: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

No. comp. A comp. B comp. C 

1 1 0 0 

2 0 1 0 

3 0 0 1 

No. comp. A comp. B comp. C 
1 1 0 0 

2 0 1 0 

3 0 0 1 
4 1/2 1/2 0 

5 0 1/2 1/2 
6 1/2 0 1/2 

6 1/3 1/3 1/3 

Nr. comp. A comp. B comp. C 

1 1 0 0 
2 0 1 0 

3 0 0 1 

4 1/3 2/3 0 

5 2/3 1/3 0 

6 0 1/3 2/3 
7 0 2/3 1/3 

8 1/3 0 2/3 
9 2/3 0 1/3 

10 1/3 1/3 1/3 
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With increasing factors and grade the number of tests increases fast as the following table 
points:  
 
 

compon. Grade 1 Grade 2 Grade 3 Grade 4 
2 2 3 4 5 

3 3 6 10 15 
4 4 10 20 35 

5 5 15 35 70 

6 6 21 56 126 
7 7 28 84 210 

        
       Number of tests into dependence of the number of components and of the type  

 
General is the formula  
 

g

gkkkk
m

......321

)1)....(2)(1(




  

 
k = number factors,  g = grade 

 
To limit the effort, one uses also here D-Optimal. The procedure is comparable with the 
conventional plans why be further come in here on this shall not.  
 
The evaluation of mixture plans is carried out with the help of the multiple regression. grade 
1 corresponds to the model linear, grade 2 squarely etc. The condition x1+ x2+.. xk = 1   is the 
reason, however, that some of the coefficients generally approach disappear. But the eval-
uation can be done via Neural Network anyway. 
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Comparison of Designs 
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Correlation 
If a connection exists between different factors (dataset), the degree or the strength of this 
connection can be ascertained with the correlation. 
 

Correlation coefficient after Bravais - Pearson 

The measurement of the degree of this connection is the correlation coefficient r. For two 
dataset x and y, r is calculated after Bravais - Pearson with: 
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With the help of the t-test the hypothesis can be checked: x and y can be considered as 
two independent datasets. The test statistic is: 
 

2
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The hypothesis on independence is rejected, if 
 

2/1,2  npr tt  

 

The correlation coefficient after Bravais-Pearson strongly reacts to outliers in the observa-
tions. Hence, the dataset should be normally distributed. 
 

Rank correlation - Spearman 

If the dataset is strongly non normally distributed or if there are categorial attributes, the rank 
correlation has to be used. Instead of the values the ranking of the sorted data is used. For 
example, for x = [5;2;7;4] the rank of the value 5 is R=3. The Spearman correlation coefficient 
is calculated with: 

 
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Also, here the t-test is used to check if the datasets x and y can be considered as two inde-
pendent datasets. 
For normally distributed data the difference between Bravais-Pearson and Spearman is low. 
 

Correlation matrix 

If there are more than two datasets (factors), each pair can be shown in a matrix. The diag-
onal contains the value 1.0 (correlation to itself is 100%).  
The correlation coefficients of lower left half are same to mirror with upper right half, because 
rx1x2 = rx2x1 etc. 
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Partial Correlation Coefficient 

The partial correlation coefficient describes the dependence of two factors without influence 
of a third factor. One can also say, how is the influence from x to y if z is eliminated or is held 
steady. The formula is: 
 

)1)(1( 22
.

yzxz
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rr

rrr
r




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Hereby there can be uncovered so-called spurious correlation. Also here is used the t-test. 
The hypothesis is: x and y are independent without the influence of z. Nevertheless, the 
degree of freedom is reduced around one and it is: 
 

3
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The hypothesis on independence is rejected, if 
 

2/1,3  npr tt  

 
 
In Visual-XSel use the menu Statistics in the spreadsheet. 
 
  
 
 
 
  

 x1 x2 x3 .. xn 

x1 1.0 rx2x1 rx3x1 .. rxnx1 

x2 rx1x2 1.0 rx3x2 .. rxnx2 

x3 rx1x3 rx2x3 1.0 .. rxnx3 

.. .. .. .. 1.0 .. 

xn rx1xn rx2xn rx3xn .. 1.0 
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4. Regression  

General 

 
If there is a connection between different features, then the degree or the strength of this 
connection can be determined with the help of correlation. The correlation coefficient r de-
scribes the strength of the connection. 
One tries at the regression calculation to put a line or curve adapted to the measurement 
pairs optimally. This is a compensation straight line in the simplest case at linear slope. One 
understands the determination of the coefficients of the compensation straight line by an 
optimal customization in that way that this difference of the straight line becomes a minimum 
(least square method). The correlation coefficient expresses how good the found equation 
adapts to the measurements. The nearer r is due to 1, the better the precision is. In any 
case there must be always more data than model coefficients exist. 
There is not always a linear connection. The main problem of the regression calculation is to 
find the right function. At the choice of the suitable function for the regression one should 
therefore watch the course of the measurements exactly at first and regard maybe known 
physical dependencies. 
 

Linear Regression 

The linear regression is defined through: 
 

xbaY   
 
The gradient b and the section of the straight lines by the y-axis a is calculated through: 
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The confidence interval for the expected value iŷ  at the position xi is calculated through the 

min und max-value: 
 

CxbaYCxbaY ioiu   

 
with  
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The estimated standard deviation s is calculated from the variance by the deviations of the 
observations to the compensation straight line: 
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Each position of xi results a different wide confidence bounds along the straight line defined 
through:  
 

CxbaYunten      and     CxbaYoben   

 

which is at least at  xxi    : 
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Linear regression through 0-point 

 
In certain cases, the facts force, that the compensation straight goes by the 0 point.  

The standard equation xbaY   becomes: 
 

 
 

Nonlinear regression 
 

A nonlinear curve is for example . The standard deviation is here: 
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C is calculated like by the linear regression. The confidence interval is adequate: 
 

Cxb
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oben eaY   

 
For example: 
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Regression types 

 
Under the button Regression in the dialogue window Diagram types find the following rep-
resented functions, where it is up to 7 degrees possible for polynomial: 
 

Y = a x^b  Straight line in a double logarithm scale 
Y = a + b·x  Simple straight line 
Y = a + b·x + c·x²   
Y = a + b·x + c·x² + d·x³   
Y = a + b·x + c·x² + ...  Polynomial up till 7th grade 
Y = a·e^(b·x)   
Y = a·e^(b/x)   
Y = a + b/x   
Y = a + b·log(x)   Straight line in a single logarithm scale  

 

X 

Y
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To find the right function choice the following examples of the most important types are 
shown below (coefficients -1 …. +1): 
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Courses which have a maximum or a minimum happen frequently. A typically function with 
a minimum in point 0 is Y=X² . If there are data points which goes not through the 0-point, 
there must be an offset like Y=X²+b. A regression of a parabola determines this offset b 
automatically. If the minimum is on the right or on the left of the Y-axis the parabola fails. 
The x-data column has to be moved to the y-axis necessarily around the value of the moving.  
 
For 3D-charts with two independent variables x and z the following basic functions are avail-
able: 
 
 
Y = a + b·x + c·z 

Y = a + b·x + c·z² 

Y = a + b·x² + c·z 

Y = a + b x² + c·z² 
 
 
The functions produced after the regression with concrete coefficients are in the Formula 
interpreter and can be changed afterwards. Perhaps this makes sense if single coefficients 
from other experiences are known. In this case there is no longer connection to the previ-
ous found coefficients 
 

Multiple Regression 

One uses a multiple regression if more than one independent factor x is available. The simple 
linear model is: 
 
y = b0  +  b1 x1  +   b2 x2  +  b3 x3  + .... 

 
It is presupposed that the features are normal distributed and linear. E.g., not linear param-
eters can be realized in most cases by remodeling or by using squared terms: 
 
y = b0  +  b1 x1  +  b2 x1²   +   b3 x2   + .... 

 
In case of tabular values this means that one adds the column to x with the values in a new 
column copied and squared. E.g., a combination two influences which represents an inter-
action also can be carried out:  
 
y = b0 + b1 x1  +  b2 x1 x2   +   b3 x2  + .... 

 
The corresponding table columns for x then have to be inserted in a new column as a product 
x². Further conversions are possible to reach the linear model. In matrix form the model 
equation is: 

Xbyˆ
   

with  ŷ  = vector of the results from the parameter set  
        X  = matrix of the actual parameter values 
         b  = vector of the coefficients 
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Hint:   1st column represents in X the constant 
 
The sought-after vector b with the coefficients determines about the matrix operation 
 

  yXXXb TT 1
  

 
Example: Interaction model is given:  
 

211222110 xxbxbxbby                 

 
The individual steps of the equation 

   yXXXb TT 1
 arise as follows 

 

X’ = X T X      with     
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z+1  columns and n  rows 
 

The respective cells are calculated after each other: 

 

 


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
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k

kj

T

ikij xxx
1

,

)(

,,'     (1st index = column, 2nd index = row) 

 
The first column represents the constant bo. The following columns are the factors x1 and x2 
and the last column is the product of x1 and x2  (interaction). 
 
 

experiment:      results Y 
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etc. cells     
 

j=1    i=1 

x’1,1  =   (1)·(1)  +  (1) ·(1)   +  (1) ·(1)   +   (1) ·(1)  +  (1) ·(1)   =  5     
 

j = 2      i = 2      

x’2,2  =   (-1)·(-1)  +  (1) ·(1)   +  (-1) ·(-1)   +   (1) ·(1)  +  (0) ·(0)   =  4     
 
 

this yields to: 
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and the revers matrix is: 
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and via the intermediate step 
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one gets the result for the sought-after coefficients: 
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So, the equation of the beginning is: 
 

2121 5,05,25,14,6 xxxxy   
 

Categorical Factors 
 
Categorical or qualitative factors whose variations are indicated in the form of textual names 
must be brought in suitable number form. One uses -1 and +1 for two attitudes in a column. 
If the categorical factor is e.g., a component of supplier A and supplier B, then A gets the 
value -1 and B the value 1. As of every broader feature (variation) an additional column is 
laid out.  
 

 F 
[B]  

F 
[C]  

F 
[D]  

A  -1 -1 -1 

B  1 0 0 

C  0 1 0 

D  0 0 1 

 
The attitude A of the generally mentioned factor F represents the basic level. The corre-
sponding line therefore contains -1 everywhere. The other variations have one in their col-
umn 1.  
Partial correlations of r have construction caused test plans with categorical factors r = 0.5 
or more greatly.  
 
 

Repetitions – Sample size 

Through repetitions of the experiment, you want to make sure not to overlook certain effects. 
So also, the type 2 error beside the type 1 error is relevant. The effect must be significant 
higher than the scatter. The ratio must have at least the amount of the quantile of the type 1 

error with 1-and additional of the quantile of the type 2 error with   1-Thus one can 
write approximately by using the normal distribution: 
 Δ �I  ≈  K@LM� + K@LO 

or better because of having only at spot check (sample): 

Δ �I =  P@LQ/2 + P@LO      �     S Δ �IT� =  UP@LQ/2 + P@LOV�
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The variance of the effect is 

�I�   =   WX   ��  =   W>Y�
Z �>[\@�   ��  
(Factor 4 => 2-levels experimental design -> half the number of tests for effects and the variances of the differ-
ences of two mean values are twice as large as the variance of a mean value). 
 I]W %]  3^_F3  �3` + 1� =  UP@LM/� + P@LOV�

  

Thus, the required number of repetitions is: 

3a =  @>Y�
Z    �]I]  4 UP1−Q/2 + P1−bV2 − 1  

Assuming that the number of degrees of freedom in the model is about DF = 10 (10 attempts 

more than the model would have been necessary), we obtain for the mean quotation: 4 UP1−Q/2 + P1−bV2  =   4 UP0,975 + P0,90V�  =   4  � 2,23 + 1,37 ��  ≈  52     
If one calculates with  = 20%, the quotation will be 39. At D-Optimal experiments 3-5 addi-

tional tests are recommended. This is the first number of DF. After the step-wise-regression 

some terms will be exclude from the model, so that we can estimate DF ≈ 10. Kleppmann /3/ 

calculates with the factor 60, so the final equation will be: 

3a ≈  de>Y�
Z    �]I]  − 1  

  

N  =  Gesamtanzahl Versuche 

N     =  Complete number of experiments 
nplan   =  Combinations the DoE e.g. 2p-1  

nw    =  Number of repetitions 
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Analyses of Variance (Model ANOVA) 

For assessment of the regression model the most important index is the coefficient of deter-
mination R² and then adjusted coefficient of determination R²adj. 
The closer R² is to the value 1, the better the model y is described through x. The smaller R² 
is the values scatter is higher and there is not the slightest connection to y. 
The following picture shows the connection between measuring and the model for one factor 
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SSTotal = SSReg + SSRes 
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s
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g

SS

SS

SS

SS
R ReRe2 1    0   R2   1  

 
One frequently also finds the adjusted coefficient of determination R ²adj. The correspond-
ing degrees of freedom are taken into account 
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s

TotalTotal

ss

adj
MS

MS

DFSS

DFSS
R ReReRe2 1

/

/
1   

 
MS      :  Variance  
DFReg   :  Degrees of Freedom of regression -> number of X-variables in model DFReg =  z - 1 

   (z = number of model-terms x1, x2, x3, x1·x2, x1² ….) 
DFRes   : Degrees of Freedom of the residuals DFRes =  n – z - 1 

   (n = number of experiments)  
DFTotal  : Degrees of Freedom total =  n 

    
For great data sizes are like A and B brought closer. The smaller the data size gets, the 
bigger the deviation is. R² overestimates the declared amount of deviation considerably at 
a small number of degrees of freedom from time to time. Great differences between R2 and 
R2

adj indicate unnecessary terms in the model. 
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Prediction Measure Q² 

The Prediction measure is the fraction of variation of the response that can be predicted by 
the model. 
 
In principle R2 rises up with more coefficients in the model because these then can adapt to 
the test points always better (SSres decreases). R2 isn't suitable to recognize whether the 
model is over-determined. For this the Q2 measure has been defined: 
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ii

ii

yy

yy
Q  

 

with  iŷ̂  = model prediction for not measured points 

 

Q2  also can get negative if the point is bigger than the denominator. 
 
Hints: 
 

R² and Q² is small 

The customization of the model is bad. This can have several causes: 
 
- Outliers 
- Wrong test order 
- Bad reproducibility 
 
Corrective: Checking the measurements for plausibility. Perhaps carrying out the tests 
once again. 
Bad test plan, possible carry out a new plan for one. 
 

R² high and Q² very small 

The model offers a good description, is, however, unstable. Tendency toward the over-de-
termination 
There are too many terms or interactions taken into account. The model should be reduced. 
The terms with the smallest effects should be deleted from the model, but be careful with 
significant interactions. 
 
- There are dominant outliers 
- One response must be transformed 
- The investigations should be going on 
  

Note: 
- In case of lean experiments (screening plans), often the Q² is worse than the model is. 
- In case of many repetitions, the Q² is better than the model is. Therefore, it should be an-

alyzed much more the lack of fit. 
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Lack of Fit 

Some further information can be analyzed from the residual. SSres is put together out: 
 
SSres = SSLoF + SSp.e. 

 
SSLoF  is the Lack of Fit, with the degrees of Freedom  DFLoF = n – z – DFp.e. -1 

SSp.e.   is the pure error  determined from repetitions. 
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Is SSres and  SSp.e known, the equation for the Lack of Fit is: 
 
SSLoF  = SSres -  SSp.e  

 

The quotient of the variances is then the Lack of Fit: 
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The result is to compare to a critical F-worth (=confidence interval). Obviously if this is big-
ger than the model terms are contained too little. 
 

Analyses of Variance overview 

The following picture shows an overview to the total Analyses of Variance: 
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Reproducibility 

The Reproducibility is described through the following equation: 
 

total

ep

MS

MS ..
1ilityReproducib   

 
This is a relative indicator which says as good we are able to reproduce the tests. This indi-
cator can only be determined with repetitions of tests. 
 

Test of the coefficient of determination 

As you described at the beginning is the regression result all the better the nearer the coef-
ficient of determination is due to 1. The question is worth as of which value under 1 the 
deviation by chance or already is only significant. To this one builds the null hypothesis: All 
regression coefficients are 0., i.e., no connection between y and x etc. insists. A weighted F 
value is calculated as test quantity:  
 

zR

znR
Fpr

)1(

)1(

2

2




  

 
with n experiments and z = number of model terms x1, x2, x3, x1, x2, x1² etc. As the result is 
significantly the regulation becomes the F-distribution with the degrees of freedom to  
 
f1 = z ,     f2 = n - z - 1  
 
used. According to the significance standard, e.g., 5% or 1%, the regression result is all the 
better with respect to the correlation coefficient, the nearer the value of the F-distribution is 
due to 0 and the null hypothesis must be rejected.  
 
The corresponding statistical basics you find in the statistical-literature. 
 

Test of the regression coefficients, the p-value 

To determine the significance of a factor, frequently the so-called p-value is used. At first 
the hypothesis is defined that a coefficient of a factor b=0. Then the p-value is the probabil-
ity to reject the hypothesis mistakenly. This probability is determined via the t-distribution: 

bs

b
t   

b  = coefficient from the multiple regression  
sb = deviation of the coefficient 
 
With using the double value of t because of the two-way test and the degrees of freedom f 

= n – z - 1 (n = count of experiments, z = count of model terms x1, x2, x3, x1·x2, x1² etc.). With 
the index j for each factor t is defined with: 
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The spread of the regression coefficient is determined through: 
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in which s is the standard deviation of the complete model. s is calculated through the sum 
of squares between the model and the measured values 
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with bo = constant term of the model.  
 

X’’  is calculated through: 
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The greater the t-worth is the smaller the p-value becomes. Usually the significance level is 
5%, that means if there is a p-value smaller than 0.05 the coefficient is significant. 
 

Test of the coefficient of determination 

As you described at the beginning is the regression result all the better the nearer the coef-
ficient of determination is due to 1. The question is worth as of which value under 1 the 
deviation by chance or already is only significant. To this one builds the null hypothesis: All 
regression coefficients are 0., i.e., no connection between y and x etc. insists. A weighted F 
value is calculated as test quantity:  
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with n of experiments and z = number of model terms x1, x2, x3, x1, x2, x1² etc. As the result is 
significantly the regulation becomes the F-distribution with the degrees of freedom to  
 

f1 = z ,     f2 = n - z - 1  
 
used. According to the significance standard, e.g., 5% or 1%, the regression result is all the 
better with respect to the correlation coefficient, the nearer the value of the F-distribution is 
due to 0 and the null hypothesis must be rejected.  
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Standard deviation of the model RMS 

The so-called RMS-Error (Root mean squared error) represents the standard deviation of 
the complete model. It is calculated through: 
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The relative standard deviation is related to the middle data area 
 
RMS / Ym 

 
and is a further control criterion. This value can also analogously be seen by Taguchi to the 
reciprocal of the not squared signal-to-noise ratio (without the pre-factor 10 lied)  
 

Confidence interval for the regression coefficient  

The confidence interval for the regression coefficient is determined with the spread already 
introduced above: 
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Confidence interval for the response 

For certain values of the factors (adjusting’s) the response value can be calculated to Y about 
the model equation (forecast). The corresponding value has a confidence interval because 
of the spread of the tests and because of the simplification of the model to the reality. This 
can be decided on the following relation: 
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T

(see above) and  x 
for the corresponding factor adjustments 
   

and  for the confidence level, nor- 

mally 5%. This form is valid under this one assumption that one parameter each are 
changed, the others however are fixed values (principle as in the case of the effect chart -> 
non simultaneous confidence interval).  
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Standardize to -1 ... +1 

All data are transformed that the range is be-
tween -1 and 1. 
 

                   
)(

)(

minmax xx

xx
xn 


   

 
 
 

Through this one gets a better comparable  
and relative influence sizes under each other.  
In addition, the multiple regression is circumstances permitting only hereby possible when 
the data areas lie far from each other. The standardization should be used at planned tests. 
  

Standardize to standard deviation 

At the standardized form the data values are related and put centrically to her standard de-
viation: 
 

s

xx
xs

)( 
  

 
The standardization should be used at historical data or tests not planned since the data 
values can happen uneven regarding her size (not orthogonal). 
 

The correlation matrix 

One understands by a correlation a more or less high linear dependence between two vari-
ables. The correlation between two factors or between x and y is defined through:  
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If there is a strong correlation between two x factors, in most cases one of both can be left 
out. 
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Response transformation (Box-Cox) 
 
For checking a possibly necessary response transformation the so-called Box-Cox-transfor-
mation is used. 
 
 

 
 
 
One after another the response is transformed according to the functions displayed below 
and the residues (SSr) are determined.  
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The smaller the residues and therefore the deviations from the model to the measured data, 
the better is the transformation to be chosen. This has to be adjusted under the category 
data, as mentioned in the beginning. It must be pointed out that after the transformation 
single significances can be changed. Therefore, on the side coefficients it has to be checked, 
if the model has to be corrected. The Box-Cox-transformation can just be executed, if a target 
factor-transformation has not yet been chosen. 
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 Transformation Inverse function  Example for a’=1, b’=1 c’=0 
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Statistical charts for multiple regression 
 

One of the most important diagrams is the Curve-diagram. Here all runs are depicted for 
the actual values of factors, marked by vertical red lines. 

 
 

The respective adjustments can be changed by moving these red lines in the graphic with 
the mouse. By interactions also the other curve linearity’s are changed. The horizontal red 
line always shows the corresponding result value of the target factor. In addition, at indication 
of a lower or upper limit a blue horizontal line each does exist. The advantage of this depic-
tion is that the math. model is visualized here directly and the gradients are a measure for 
influences. 15 curves in maximum can be depicted. Thereby the sequence in the list of in-
dependent factors under the category model is standard and can be changed there. 
 
The diagram Interaction-Chart resembles the curve diagram. 
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The diagram interactions resemble the curve diagram. The respective curses of curve are 
represented in pairs here. Every curve couple stands for the respective factors stands with 
his color with that one of these in an interaction (see color of factor names below the scale). 
The factor StiffnRod has e.g., an interaction with DampRod. A line about StiffnRod with the 
identification (+) stands and one with the identification for the upper one (-) for the lower 
attitude of the factor DampRod. The assignment is possible over the colors. Interactions 
which aren't significant and taken out of the model aren't represented. So, the complete con-
nection is easily comprehensible in a look. 
 
The so-called Effects, which are depicted in an own diagram, are respectively built from the 
top and lowest point of curves. Therefore, they are dependent of the respectively actual fac-
tor adjustments. The effects are depicted as histogram sorted by their absolute size. Here 
you can recognize directly, where are the largest improvement potentials. 
 

 
 
In the Pareto-chart all model terms are listed, whereas here the 95%-scatter areas are pre-
sent. Besides this the algebraic sign have been taken into account. 
Depending on the number of model terms, however the graphic can be complex  
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(disadvantage compared to the effect diagram). A further important graphic is the Model 
versus Observations, whereas here Outliers are displayed, where the respectively point 
is red instead of blue. 

 

 
The better the model and the stability index, the more exact are the model values at the ob-
servations, resp. at the measure value. It would be ideal that all points would lie on the 45°-
line. The deviations of every point of this line are called Residues. Because of the method 
of the smallest error squares, the residues should be normal distributed accordingly. They 
can be depicted in a further diagram: 
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Especially for depiction of influence of one or two factors to the response a 2D or 3D-Dia-
gram can be chosen.  

It makes sense to use the factors, where an interaction exists. The diagram is created via 
the so-called formula interpreter. Therefore, the both variables (factors) are indicated short-
ened. The relative long formula over the diagram partly exists because of the re-conversion 
of standardization, on which the factors refer to. Those again you find in the tabular over-
view at the beginning. Alternative the diagram type can also be another one, e.g., level-
curve diagram. This corresponds to the 3D-view above.  
 
The diagram type is selected under the menu point of the main window Diagram/Diagram-
type. After this diagram selection there is no longer an internal reference to the multiple re-
gression. The diagram is seen as independent and is not actualized at modification of fac-
tors and so on.  
 

Regulation of outliers 

For the regulation of outliers, one looks at the residua of the respective points, i.e., the devi-
ations of the observations (measurements) to the model values. When this deviation is re-
garded as an outlier the test after Grubbs is recommended. The hypothesis is: xr is an outlier. 
xr stands for the values of the residua, sr for the standard deviation of the residua 
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Tn,1-  is the critical worth of the Grubbs-Test after the following table: 
 

 
 
 
 

 

 

 

 
 
 
 
 
 
 
 

 

Optimization 

One understands by an optimization of regression models finding the right adjusting’s of all 
factors for a minimum, maxima or a predefined set point of the response variable.  

Example: For the model Y= 1 + 2A + 3B + 4C + 5D +6AB the minimum should be found. 
 

       

 
The attitudes of -1 are obviously the best points for all factors. Y has the value-7. Due to 
the interaction the considerably better minimum is the result, however with Y= -15 by 1;-1;-
1;-1 

-1 0 1 -1 0 1 -1 0 1 -1 0 1

Y

-4

-2

0

2

4

6

A B C D

00 00 00 00

Y = 1  +/-  7,18E-19Y = 1  +/-  7,18E-19

n Tn,0,95  Tn,0,99 

3 1,15 1,16 
4 1,46 1,49 

5 1,67 1,75 

6 1,82 1,94 

7 1.94 2,10 

8 2,03 2,22 
9 2,11 2,32 

10 2,18 2,41 
12 2,29 2,55 

15 2,41 2,71 

20 2,56 2,88 
30 2,75 3,10 

40 2,87 3,24 
50 2,96 3,34 

100 3,21 3,60 
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At the search for the best point all mutual attitudes must be checked because of a possible 
turning back of the gradients.  
  
At the search for an optimal attitude for several response values a conflict can be appear if 
the best points lie in an opposite direction. A compromise must be found here. One works 
for it with a so-called fulfilment degree which yields a summarized value for all response 
values. The result is the corresponding "wish function". At first a plausible significant model 
is determined and an optimum of each model is found. It can already happen that some 
factors are not significant for all response variables. After that the optimization of all re-

sponses is together carried out via the degree of performance: 

 




























 

m

i ii

jii

iMinMax

YOpt

1

,

2

      

with  
m     :  number of response variables 
max/min   :  the respectively greatest and smallest Y value 
Yi,j    :  current model response for every response value at the  

   continuous variation steps j 

 i    :  weighting factor for every response variable     

If certain response values have maybe a higher importance than other, this can be taken 

into account by a weighting factor . 
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Y = -15  +/-  2,15E-18Y = -15  +/-  2,15E-18
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Discrete Regression 

 The 
Multiple Regression requires steady target 
values. However, it also can happen that the target value has qualitative character or only 
2 expressions (e.g., component has a rip or is o.k.). One usually uses the so-called Dis-
crete Regression for this way of the evaluation. The coefficient of the model is carried out 
the determination via the Maximum Likelihood-Method. This is in the equal dialogue win-
dow as the multiple regression treats. There are some unusual features and restrictions, 
though. The result describes the probability that the target value takes a certain expres-
sion. Therefore, it is to fix data in addition to which this probability applies (here expression 
1) in the category.  
Being the so-called pseudo-R² indicated instead of the certainty measure R² in the category 
of regression. LL consists this of the lying Likelihoods, short. Another indicator is the devia-
tion D= -2 LL. Since in the discrete regression probabilities are treated here does not exist 
any residual respectively the Sum of Squares. So instead of the ANOVA a combination of 
the identification values is represented. For this reason, the choice of the graphics does not 
contain any diagram types which represent residua either.  
The Box Cox transformation is not here necessary because the transformation of the target 
value is already provided tightly on "Logits". The curve diagram contains typical S curves, 
because for the discrete regression probabilities under 0 and over 1 are not possible.  
 

 
 
A special feature of the logistical regression is the evaluation of the groupings. The factors 
are. groups summarized here in classes. The number of response value expressions is 
counted (H event). One divides this number by the group quantity (H observations), one 
gets the observation probability (P observations), the probabilities found out with these 

from the model (P expected) compared and tested against a critical -value.  
 

Discrete regression bases  

One understands an evaluation by a discrete regression with target values which do not 
have any steady measurement but qualitative character. The result of an examination 
could be judged only "well" or "badly", as rip available or not, for example. These state-
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ments represent the undermost level of the determinable. It should always be aim to re-
ceive the "dissolution" as best as possible, i.e., at least one graduation like a beginning rip, 
rip by center, rip almost complete and ragged. The evaluation with the standard multiple 
regression is still possible. The graduation has to be defined with as equal distances as 
possible. 
Furthermore, if only 2 expressions are possible (bad/good or black/white) the following pro-
cedure can be applied.  For example, the data is given:  
 

 
 
this one for the not satisfactory following regression leads (straight line approximation):  
 

 
 
It makes more sense to represent the probabilities here instead of the direct representation 
of the target value that a "condition" enters. One almost combines x areas to come "onto 
countable events" to this (classification). The table then becomes:  
 
 

 
 
The x values are assigned to the groups of 1, 2 and 3 (according to a centric classification, 
here on integer numbers). The number is y = 1 counted (how it is "good" and "bad" at con-
cepts to fix on what counting refers e.g., open "badly") within these groups now. From this 
the relative frequencies can be calculated per group. If one represents these, then a sub-
stantially better relation arises:  
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This is bought by a diminution of the x information, i.e., for this evaluation considerably 
more observations are used than at steady measurands. Originally these makes 12 infor-
mation’s in the previous example stand, 3 at the disposal only what is a corresponding dis-
advantage. Under circumstances too few degrees of freedom are entitled at the evaluation 
for the regulation of possible interactions at the disposal. Since it is pure observations here 
but usually (not around planned tests), however, sufficient data are as a rule also available.  
 
Estimators are the formation of the relative frequencies for the probability P simultaneously, 
it becomes y =1. It is valid:  
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ni = number of y=1 (cannot be 0, usually ngroupe >= 5) 
 
For ni < 0 and ni > 4 nonsensical probabilities of P < 0 and P > 1 give up, though. There-
fore, suitable transformations are necessary. A transformation frequently used for this prob-
lem definition is the so-called Logit model:  
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The expression P/(1-P) represents odds and the meaning has admission probability/coun-
ter-probability. One also speaks here about Logits. A little strange, it is the dealing with 
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odds and the interpretation one is horse bets, then, because the odds correspond to the 
quotas here. It is important to notice that the logistical regression treats not probabilities but 
probability conditions.  
 
To remove the low limit of the domain in addition, the odds become in addition logarithm. 
The inverse function is needed for the inverse function after the regulation of the model pa-
rameters on probabilities also here:  
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This also is described as a "logistical" distribution function. The limits P = 0 and P = 1 about 
the Logit are not portrayable. The number ni per group should not be 0 anyway.  
With steady target values the prerequisite for the method of the smallest error squares for 
the estimate of the sought-after coefficients b is that the error deviations have an identical 
variance at the regression. This is not the case here. Therefore, a weighted regression 
must be used. To this an estimator is needed for the variance. The already established re-
lation became a determination of the coefficients at not weighted regression till now  

  YXXXB TT 1ˆ 
  

used. At the logistical regression there is the problem that the variances of the model errors 
are not constant. Through this the variances of the model estimators cannot be minimized 
about the method of the smallest error squares. However, the problem can be removed by 
a weighted regression. Be the variances of every observation needed to this, these through  
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you define. The estimators for the regression coefficients then determine themselves 
through:  
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Y ' is the vector of the corresponding Logits. A new problem arises, however. The estima-
tors determine itself only from the result of the calculation. So, an iterative calculation must 
be carried out.  
 
Another possibility for the regulation of the model parameters is the maximum Likelihood, 
short ml method. The basic concept is relatively simple. The parameters are chosen so that 
the valued variables are the most similar to the observations in the data set (Likelihood). 
The similarity is, described by the so-called Likelihood function this one the Likelihoods of 
all cases of the data set consists of the product:  
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Yi dates from the n observations, ip̂  

 
from the model. The coefficients of the model are to search so now that LH gets maximum. 
It is like a probability, can accept a value between 0 and 1 since a little similar to the likeli-
hood of a single case. Likelihood the product of many numbers between 0 and 1 gets mi-
nute, though, therefore becomes also here LH is logarithmized and is made it this LL lied 
short:  
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)ˆ1ln()1()ˆln()ln(  

There is no analytical solution for the two variants. The coefficients also must be deter-
mined iteratively in which at first one chooses an arbitrary start value. With these the Logits 

and the first estimated values of the probabilities ip̂ can being certainly. The product of the 

LH function or the sum is charged to the LL with that for every data series. The same must 
repeated as long, as no greater LL-value can be found 
It is the most important advantage of the maximum likelihood method, that for the regulation 
of the coefficients no group formation of the data is required (can contain 0 events, where 
Logits are not calculable).  
 

A dimension for the quality of the found solution is the deviation:  
 

LLD 2  
 

The omen is changed since the logarithmic value between 0 and 1 is always negative. One 

gets in addition one (²-distributed value which means how badly the model describes the 
data through this with the factor 2. Therefore, it is all the better the smaller this value is.  
At the normal multiple regression, the certainty measure R² is primarily indicated for the 
quality of the model. There is no direct correspondence, however, a pseudo-R² was defined 
by McFadden:  
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LLo : Log-Likelihood of the model, this is only the constant y ' = bo 
LL1 :  Log-Likelihood of the concrete model y ' = bo+ b1x1 +   
 
cannot reach the value 1, as a rule, values from 0,2 to 0,4 are already regarded as a good 
model customization.  
 
For the assessment of the significance of the individual coefficients (factors) the deviation 
test is recommended. It is checked whether the model shows with the respective factor 
compared with this without just this significant difference. For the check of a factor the dif-
ference of the deviation is formed:  
 

 FFF LLLLLLLLD  11 2)2(2  
in which the index F stands for the model without the factor to be looked at compared with 
the exit model with the index 1 (see pseudo-R²).  

With the ²-distribution as well and the degrees of freedom df  = 1, the p-Value = 1 -  can be 
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determined.  
The complete model also can analogously be tested (see pseudo-R² in turn) compared with 
the "zero model" to this. The difference deviance is:  
 

 012 LLLLDG   
 

df = with the degree of freedom: z = number of factors, interactions etc.  
 
Relatively to the power of computation effort means one this approach, however, because 
the ml iteration must be carried out for every factor to be checked. As an alternative to it 
the woods test frequently mentioned can be used. This is like the t test at the normal re-
gression. The test quantity is for every factor:  
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the already established diagonal matrix was and in which (from the variances of every ob-
servation series.  
 
 

Poisson Regression 

The Poisson distribution describes countable events that occur in a defined time interval. 
This can be, for example the number of error messages within a week. Poisson regression 
is treated in connection with the so-called generalized linear regression model (GLM). 
 

The goal is to determine a model for countable events based on the Poisson distribution, 
which is well suited for this purpose. 
 

The Poisson density function (probability that the number of errors y occurs) is defined as: 
 f�g� =  hi'!  �Lk 

 

Normally, the number of errors is declared as x. Since in the following x is required for the 

influence parameters, y should be used here. As with lifetime models, the relationship for the 
Poisson rate can be best represented logarithmically: 
 ln�� =  C# + C@g@ + C�g� + ⋯ + Cogo 
 

therefore, it is:  
 

 = �;
\ ;pqp\;]q]\⋯\ ;rqr    
 

y  :  number of events or errors integer 

 :  Poisson- or Error rate   

b  :  coefficients of the model 

x  :  influence parameters  
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Assuming that the observed events are yi Poisson-distributed, the expected value is E[yi] = 
i. Each observation must be independent of each other and random. The best estimator for 
the coefficients b is given if the product of all probabilities (likelihood � L) of each i-th obser-
vation is a maximum. The following applies to this: 

s�Ct , C1, C2, … C4�  =   v h= iw'=!>
=?@  �Lkw   

The determination of the coefficients cannot be done analytically, as in multiple regression, 
because y is both in the exponent and in the denominator with faculty. This makes it clear 
that the result must differ from the method of the least square estimation.  
 
However, the differences are small and the coefficients determined herewith can be used as 
a starting condition of the iterative calculation. The so-called Newton-Raphson method is 
most often mentioned for this iterative calculation. The logarithmic form can also be used to 
search for the maximum probabilities, resulting in the so-called log likelihood function LL: 

ss�Ct, C1, C2 , … C4� =  - '=
>

=?@ ln h= − h= − ln�'=!�   
The goal is to find the coefficients where the sum of the right side is a maximum. Because 
of this the method is well known as Maximum Likelihood Estimation MLE for short. Depend-
ing on the cancellation criterion or the number of selected iteration steps, slightly different 
results can arise!  
 

The dispersion of the coefficients sb is determined by: 
 �;,= =  x�Ff�y�z+{�L@�  
 

with the weight  
 G̀,= =   gG,= � )=   and  )= = exp�Ct +  C1g1,� + C2g2,� + ⋯ � 
 

To determine whether the coefficients are significant, the p-value is obtained by  
 

p-value = 2�DistributionNormal(-|z|) 
 

with 
 

z = 
;w%�,w  

 

The parameter is regarded as significant if p-value < 0,05, see chapter Statistical hypothe-

sis tests. 

To assess the overall model, the sum of the deviation squares is calculated as a so-called 
deviance. The model scattering is: 
 

��;� = 2 - '=
>

=?@ ln . '=��; 1 − �'= − ��;�   
 

and where only the constant bo is in the model: 

with  Xb = C# + C@g@,= + C�g�,= + ⋯ 
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��;#� = 2 - '=
>

=?@ ln . '=�;#1 − �'= − �;#�   
 

which results in the so-called coefficient of determination with: 
 

R² =  1 -  
��C���Ct�      

 
Instead of the adjusted R², like at the multiple regression, here a corrected R² cor is used: 
 

R²kor  =  R²  -  
4��Ct� 

 

Poisson-Regression with Intercept 

If there are no events for certain combinations of the influencing parameters, there is a prob-
lem that ln(yi=0) is not possible. Therefore, an offset should be used, which is called intercept 
here and which can be set individually for each observation. It is recommended to set this 
intercept only for the case of yi=0 to 0.01.    
 

Normalized Model 

As with multiple regression, it is recommended that the influence parameters x are normal-
ized: 
 

xnorm  = �qLq̅�q�
�Lq�wZ  

 

This makes the range of values between -1 .. +1 and the determination of the model be-
comes more stable, the significance becomes clearer. In contrast to Visual-XSel, the many 
statistical programs use the original value ranges as the default setting, so the coefficients 
differ and the models may be different. 

Further characteristics 

Another very frequently mentioned characteristics for likelihood-based models and thus also 
for Poisson regression is the Akaike Information Criterion, AIC for short, named after the 
Japanese Hirotsugu Akaike AIC 
 ��� =  −2 ss + 2�4 + 1�  
 

The smaller AIC is, the better, but AIC alone cannot be interpreted, because there is no 
universal limit value for a best value. AIC is therefore more used for comparisons between 
different models. As with the R², models with more terms, such as interaction terms, usually 
provide better AIC values, although z increases and is received with a factor of 2. However, 
these terms may only remain in the model if they are also significant (see p-value) 
 
Another criterion is the so-called Bayesian Information Criterion, BIC for short (named after 
the English statistician Thomas Bayes). This key figure is very similar to the AIC and also 
takes into account the number of measures n: 
 ��� =  −2 ss + �4 + 1�� ln�3�  
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From n > 7, BIC becomes larger than AIC and punishes more complex models more se-
verely. However, the influence of n should not be understood in such a way that the smallest 
possible data sets should be used. More information is basically an advantage for modeling.   
Although AIC and BIC are often mentioned as important characteristics, the practical benefits 
seem limited due to the disadvantages mentioned. 
 
Confidence intervals 

The ² distribution can be used for the confidence intervals of the model predictions. With a 

usual confidence range of 90%, the probability of error is  = 10%. The two-sided trust scope 
for the number (error) events y is: 

 12  �M�,�i � �  ' �  12 �@LM�,��i\@��    
 

Example wastage in a manufacturing process 

In an experimental design, the wastage of components was counted as a function of tem-
perature, pressure, time and particle grain size in the material. 
 

The model yields the following coefficients 
 

 
 

 
 
All parameters are significant (p-value < 
0,05).  
 

The following curve diagram shows the rela-
tionships as a continuous function, the results of which are to be rounded up or down.  
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The confidence ranges are relatively strongly asymmetrical, see chapter Confidence inter-
vals. 
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5. Multivariate Analyses 

Cluster Analysis 

One understands essentially a grouping of unordered data (e.g., measurements, image 
dots etc.) by a cluster analysis. For example: 
 

 
The grouping is made by similarity characteristic. As a rule, these are distance data as the 
represented picture shows. In this case there is a high similarity if the data points have a 
distance as low as possible to each other. 
d = degree of heterogeneous = measures for the assessment of the distances between the 
objects  
 

Euclid’s distance :   

   2

12

2

12 yyxxd   

 
City-block Distance :    

1212 yyxxd   

 
Tschebyscheff distance :   

 1212 ;max yyxxd   

 
   

Y   

X   

2   

1   
Euk  

City   

Tsc  

 
 
There can exist similarities also in form of a correlation matrix. The higher the correlation is, 
the more similar the "objects" are to each other. So, a greater value is relevant here. There 
doesn't exist the initial data in the form of coordinates but there is a matrix where is shown a 
relation from each object to each other. The measurement to this is described by the corre-
lation coefficient r. In this case the object distance is d=1-r because the objects more nearly, 
the higher the correlation is. As an alternative to this often d=ArcCos (r) is used. Respectively 
higher distances caused through this equation. The similarities cannot be related by data in 

Y

XX

Group 1 

Group 2 
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rows but with the titles and the data columns. Therefore, here has to be created first a cor-
relation matrix before the cluster analysis. 
 
The targets of building clusters are: 
 

-  Creating a simplified more open structure 
-  Data reduction 
-  Recognizing of connections 
 
In Visual-XSel there is implemented the hierarchical agglomerative method. 
 
The advantages are: 

-  No specification regarding number of clusters necessary 
- Additional reduction of the clusters by "limit distance" possible 
-  Every run yields the same result 
-  Efficient algorithm to be implemented easily 
-  Graphic representation option of the clusters as a tree structure 

 
The method shall be clarified at a simple example. The following objects are given with their 
coordinates:  
 

 
 
 
 
 
 
 
 
 
 
 

 
Only 2 coordinates are represented here. n dimensional coordinates (columns) are possible 
where 3 coordinates can be visualized in a 3D-diagram.  
The distance matrix arises from the coordinates. (Values = Euclid’s distances): 
 

 
 
 
 
 
 
 
 
 
 

 

 x y 

A 9 4 

B 0 4 

C 7 9 

D 1 5 

E 8 1 

F 10 0 

G 11 10 

 A B C D E F G 

A  9,0 5,4 8,1 3,2 4,1 6,3 

B 9,0  8,6 1,4 8,5 10,8 12,5 

C 5,4 8,6  7,2 8,1 9,5 4,1 

D 8,1 1,4 7,2  8,1 10,3 11,2 

E 3,2 8,5 8,1 8,1  2,2 9,5 

F 4,1 10,8 9,5 10,3 2,2  10,0 

G 6,3 12,5 4,1 11,2 9,5 10,0  
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The first cluster (object pair) is carried out via the smallest distance. This is between B and 
D with the distance of 1.4. Between these points there will be created a new center with the 
name BD. 
 

 
 
The coordinates of the new group are calculated by XBD = 1/2 (XB+XD). YBD = 1/2 (YB+YD). 
Correspondingly applies to the next group XAEF = 1/3 (XA+XE+ XF)… If there exists, however, 
only a distance matrix, then the cluster center can be determined also about the following 
geometric relation: 

 
2

2 222

EFAFAE
dbd

d


   

 

The results of both variants, however, do not yield exactly the same because the geometric 
center is calculated is here only an approximation method. 
The distance of E and F amounts to 2.2 and therefore represents the 2nd group. The 3rd 
group is already a combination of 3 points AEF. After every run the complete table must be 
built up newly. 
At the first summary the partner B will be deleted (values in column and line). Instead of D it 
will be set BD with the new distances to the remaining objects calculated with the given 
formula (bold values). It's better to define here BD and not DB 
 

 
 
 
 
 
 
 
 
 
 

 
The table goes down always further until 2 partners are only left. The individual steps can 
be clarified as a tree structure, also called dendrogram  

 A B C BD E F G 

A   5,4 8,1 3,2 4,1 6,3 

B        

C 5,4   7,2 8,1 9,5 4,1 

BD 8,1  7,2  8,1 10,3 11,2 

E 3,2  8,1 8,1  2,2 9,5 

F 4,1  9,5 10,3 2,2  10,1 

G 6,3  4,1 11,2 9,5 10,1  
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The distances of the groups get longer from left to right. At the end of this algorithm, the last 
group will include all combinations. 
Instead of the dendrogram one can have a structure list 

 
 
Through direct specification or definition of the distance a desired number of clusters can 
be achieved. The last two summaries are not carried out. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Categorial characteristics cannot be defined directly. It is necessary to transform the basis 
data in a numerical format first. This can be done by producing columns with worth of 1 and 
0 to describe the expressions. For example, y can be transformed into the following numeric 
format: 
 
 

 

G

C

F

E

A

D

B
4

3,51

G

C

F

E

A

D

B
3

7,27

G

C

F

E

A

D

B
2

Basis data   New structure 

 x y    x ya yb yc 

A 9 a   A 9 1 0 0 

B 0 b   B 0 0 1 0 

C 7 c   C 7 0 0 1 

D 1 a   D 1 1 0 0 

E 8 b   E 8 0 1 0 

F 10 c   F 10 0 0 1 

G 11 a   G 11 1 0 0 

 

G

C

F

E

A

D

B

 

4,1

 

2,2

 

 

1,4

 

 

 

 

 

3,51

 

 

 

 

 

7,27

 

 

 

 

 

 

 

 

8,61
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Principal Component Analysis PCA 
 

The Principal Component Analysis calculates new so-called latent variables. These are 
shortened called factors and represent the Principal Components PC. Do not mix up this 
name with the factors by DoE. It is the target to describe all existing variables with few factors 
(data reduction). With the variables x1 and x2 and its measurement points the principle shall 

be described like shown on in the following picture. 
 

 
 

The measurement points lie in an ellipse which location depends on the correlation between 
the variables. A new axis system arises by moving the zero point and turning the coordinate 

system. The first so-called main axle rejects in the direction of the greatest spread of the 
standardized values of x1 and x2. The second main axle stands vertically on the first one and 

explains the lower share of the variance. Therefore, one also describes the principal compo-
nents as eigenvectors. 
For the determination of the principal components so-called factor loadings P and Score 
values T are defined. The factor loadings describe the situation of the PC to the original 
coordinate system of x1 and x2. The dimension of the factor loadings is -> number of com-

ponents x number of variable x. The Score values T describe the projections on the main 
axles for every point. The dimension of T is  -> number of component x number of measure-

ments. The connection is in matrix notation:  
T

PTX   

The following condition applies to the factor loadings: 

1... 22

2

2

1  kppp  

The Principal Components are calculated through the Score-values ti and the eigenvalues i  

i

i
i

t
PC


  

The eigenvalue i describes, how much of the total spread of all variables is declared through 

the factors. The eigenvalues also serve for the decision whether factors in the model can be 
kept or left out. If the eigenvalue is less or equal 1, it explains less or equal of the variance 
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of one variable. If this is the case the factor can be left out. eigenvalues and eigenvectors 

yield an independent structure of each other (orthogonal). 
 

The eigenvalues cannot be calculated directly or analytically and must be iteratively deter-
mined (eigenvalue problem). For further details we must refer to the appropriate literature. 

 
Example: Defined are the variables x1, x2 and x3. Calculated are the factor F: 

 
 

 
 

 
 

 

For these data a factor suffices (is  for the second and third factor is under 1). There are 

also the so-called correlation loadings next to the factor loadings. These are the correlations 
between the factors and the original variables. If one looks at the correlations to each other, 
then it can be shown that the new factors correlate more highly with all exiting variables. It is 
just the target of the factor to reach a "description" as good as possible of all variables to-
gether. 
 

x3: F -0,958 

x2: F -0,881 

x1: F  0,881 

x1: x3 -0,800 

x2: x3  0,800 

x1: x2   0,600 

 
It has to be taken into account here for the interpretation that the factor correlates with x1 

positively and with variable x2 and x3 negatively. A negative correlation means that the di-

rection has turned. 
 
 

x1  x2  x3   F  

1 3 4 -1,00 

2 4 3 -0,70 

3 1 1   1,00 

4 2 2   0,70 
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Partial Least Square (PLS) 
 

PLS was developed 1960 of the Swedish econometrist Herman Wold. PLS means: Partial 
Least Squares Modeling " into latent variable " . The purpose is primarily the evaluation of 
correlating data or the evaluation of mixture plans, where the standard method Multiple Lin-
ear Regression (MLR) isn’t practicable. It is also an essential advantage of PLS that much 
variables can be processed. It is even possible to evaluate with less information (data rows) 
than variables exist. This is not possible with MLR. 

The represented picture shows two variables x1 and x2. The main component analysis PCA 
with tPCA lies in the "bump" of the ellipse. The greater x1 and x2 correlate, the longer tPCA 

gets. If there is no correlation, the vector direction is not defined by tPCA any more, because 
the ellipse then becomes a circle and has no more preferred direction.  

 

 
The component of tPLS however is then still determinable about the analysis of the covariance. 
This is a decisive advantage of PLS over PCA. The results, i.e., the coefficients of the vari-

ables, are then identical with the MLR method (for orthogonal data). While the MLR method 
provides no longer clear results or completely gets out at very correlating data, furthermore 
the PLS method can be used. Even if two variables have a correlation or 100%, this is still 

possible. Of course, the assignment of the effects is then no longer clear, in this case PLS 
shares the effects half to the two variables.  

It is the disadvantage of the PLS method that the forecasts and R² are worse than at MLR. 
The coefficients are partly also fundamentally smaller, what causes to estimate the effects 
too little. 
 

PLS is very related with PCA. Instead of the loadings (PCA) here is the weight matrix W rel-
evant 

T
WTX   

T are the so-called Scores of the components. W includes the response y, which doesn’t 

exist in PCA. Also, here the following condition applies to the weights: 

1... 22

2

2

1  kwww  

The regression model is defined with:  

T
cTy ˆ  

x2 

x1 

Y 

t PCA 

t PLS t MLR 
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where c is the regression coefficient. 
 

The complete algorithm (NIPALS – Nonlinear Iterative Partial Least Square) is shown be-
low: 

 

 
yy

yX
w

T

T

'  
weights absolute for the standardized matrix X 

 2'/' www  standardized weights 

Xwt   







z

j j

z

j jj

xy

xxy

1

2

1

),cov(

),cov(
 

score vector 
 
with z = number of variables 

tt

ty
c

T

T


 

regression coefficients between y and the components 

tt

tX
p

T

T


 

loading-vector 

T
tpXE   

residual-matrix of variables 

T
tcyf 

 
residual-vector of the response 

 

The next components are determined by defining X = E and y = f and recalculate at the be-
ginning. Through adding more components often R² raises. If this is not the case, no other 
components are required. By using more components, it can happen that some coefficients 

are changed extreme. Then the model with the bigger number of components is relevant. 
Regarding the original variables x, the coefficients b can be calculated through: 

 

TT
cWPWb

1
)(

  

Summarized characteristics: 

 R²PLS is less then R²MLR 

 Coefficients of PLS are less than MLR-> Errors have a less effect through this. 

 PLS maximizes the covariance between the principal components and Y,  
MLR maximizes the correlation  

 PLS is able to work with high correlations between the x variables. 
 

PLS has got acceptance in the sectors of pharmaceutical, chemistry and spectroscopy as a 
standard. It is often used as a universal method for all evaluations. However, the multiple 

regression still has to be preferred for evaluations where the data is not too strongly corre-
lating (e.g., from the design of experiments). The interpretation of the effects and the model 

is better here. At orthogonal data the coefficients of the regression models are also the 
same. 
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Estimation of the spread at PLS 

In general, the spread of the coefficients b cannot be calculated for PLS via the trace of 

  1
XX T

 like by MLR-Method. If the correlation is great between the variables, the spread 
can be estimated only via a so-called cross validation. The disadvantage here is a not defi-
nite result and the calculation needs much computing time. 
 

To calculate and applicate here the p-Value, like at MLR is not recommended here. For 
PLS and the variable selection there is much better suitable the so-called VIP-indicator 

Variable selection with VIP 

For using the PLS-Method and the variable selection here it is suitable to consider the VIP-

indicator. VIP is an abbreviation of  Variable Importance in the Projection. That means how 
much is the influence of the variable in the projection of the scores t.  
This indicator is first launched by Wold in 1993. VIP is calculated for each xj via: 
 






















h

k k

T

k

k

Th

k

jk

k

T

k

k

T

j
tt

ty
w

tt

ty
zVIP

11

2   

 
with  h = number of components,  
        z = number of variables x (e.g. terms) 

 
The y-vector must be standardized first. In the literature there is described a limit for VIP 

between 0,8 …1. A too less value indicates, that the variable can be left out. But experiences 
have shown, that VIP<0.5 are not unusual for important variables  

 
If there is the question whether a variable should be left out from the model, the coefficient 
size also has to be taken into account. Also, the technical connections should be considered. 
 

 
PLS charts 

Especially for evaluation of PLS-Analysis there are two important charts, the Score Plot and 
the Correlation Loading Plot. These charts can be selected under the rubric charts (after 

PLS data analysis via menu Statistics of the spreadsheet). 
 

Score Plot 
The Score plot represents every measurement point about the most important Scores t1 and 
t2. Possible samples and characteristics in common can be recognized. Also, outliers can 
be recognized. 
 



74  ©  C. Ronniger  2025 

 

   
   
 
 
Correlation Loading Plot 

In the so-called Correlation Loading Plot the professed variances of the variables and the 
target value are represented indirectly on the components PC here. 
 
The axis is scaled as correlations, so it is: professed variance = correlation^2. 
Hereby the influences of the variables are shown and one recognizes which components 
describe the variables better. The ellipses describe 100% (outer) and 50% (inner) professed 
variance 
 

 
 

The nearer the variables are to the 100% ellipse, the more important these are. In this ex-

ample the component PC1 describes the variables x1, x2 and also the response y approxi-
mately alone, while the variable x3 needs both components. 
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Further statistical charts 

Scatter bars 

In practice it frequently occurs that certain circumstances are illustrated with just one or a 
few measurements. If you ascertain that the result scatters more or less, in most instances 
the median is built. This is absolutely permitted, if the value staggers marginally after re-
peated measurements. But if there are larger variations, different test series are difficult to 
compare to each other, especially, if outliers do occur. Possibly you will get no unique com-
promise output. An illustration with Scatter bars will help in this case. Here an example: 
 

 
 
In 4 test series the values respectively listed among each other have been quantified. After 
selection of the menu point Statistic/Scatter bars the following diagram results: 
 

 
 
Please note that the titles of columns (legend) standing in the first row are used as X-axis 
title. The first column is also used as series and is not interpreted as reference to the x-axis 
like at the most other diagram types. 
If the median and the Scatter s is just known from samples (resp. measurements) and a 
predication should be made about the totality (then infinitely many measurements should be 
executed), so a so-called confidence belt can be indicated, in which the true median lies with 
PA % probability.  
If you choose maximal and minimal value in the dialog window Statistics/Scatter bars, just 
the maximal and minimal value of the entered data (sample) will be determined, as shown 
here in the example. If the number of samples would be increased, so another maximal or 
minimal value could be found. For this reason, it is recommended to choose one of the 3 
confidence belts, which are available. Particularly here the outliers do affect not so seriously.  
 
Activate the menu point Options/Show data, to type out the medians and the confidence 
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belts resp. the min/max-areas in the diagram. Those are also in the graphical data (table 
menu point Insert/Graphic-data). 
  

Boxplot  

The boxplot is a special type of frequency scale. Here the values are depicted via the y-axis 
instead of the x-axis, whereas several boxplots in parallel are possible in one diagram. In the 
middle of the boxplot there is a line with the so-called center-value resp. median. Optional 
also the median can be chosen. Within the inner field there are 50% of all values. Within the 
outer margin lines top and down are 99% of all values. Optional also the smallest and largest 
occurring value can be displayed (min/max-values). If there are too little data values, the 
99% areas correspond to those of the min/max-values. 
 

In opposite to the frequency scale with Gauss curve here you get a rapid comparison about 
the respective status of several series.  
The values of the respective series are written among each other. In the first row there is the 
reference to the X-axis resp. the legend for the single boxplots. An example for following 
table values: 
 

 
 

After selection of diagram type boxplot vertical the following develops: 
 

 
 
Optional the single values can be depicted as eye-catcher-points with their numerical val-
ues. See also Boxplot horizontal, Scatter bars 
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Median plot 

In a diagram a median plot summarizes several columns of the table to a curve, which con-
tain vertical narrow bars as min-/max values. 
The curves depict the median of the cells, standing in one row. For designation of the sum-
marized columns the legend is used, which can be found in the first row of the marked table 
area. The next area starts from the column of the next following legend, e.g., 2 groups with 
each 3 columns: 
 

 
 
Those table data result this illustration as median plot: 
 

 
See also Group chart 

Gliding average 

The illustration of gliding average corresponds to the line diagram with at first one „main 
curve“. The reference to the X-axis stands in the first column of the table. The data of the 
main curve (Y-values) are in the proximate column. 
Additional three other curves are created, which are built from the particular medians of the 
main curve. Thereby every point of these additional curves is composed from the median of 
several previous points of the main curve. How many points will be used for this, is fixed in 
the dialog window of the diagram types.  
The data, developing in doing so stand in the following 3 columns, which have to be blank 
for this reason. Possibly existing cell-contents are overwritten. If e.g., there are the following 
values in the first two columns of the table: 

 
1
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4
5
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1 
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5
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If the median lines are ascertained from respectively 2, 7 and 14 last data points, so this 
diagram results, which e.g. can be used for stock quotation: 
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Pareto 
 

The Pareto diagram corresponds to a histogram, whereas the pursuant columns are 

depicted in turn, sorted according to the size. In addition the columns have different 
colours. The biggest value is at the beginning, the smallest at the end. 

 
This diagram type is used e.g., to prefix the most important influence factors. 

 
A particular form of the Pareto-chart has an additional sum-curve (cumulative values) over 

the bars: 
 

 
 
The other variation is the bars represent the sum of the prior values 

 

 
 
(Also possible in horizontal representing) 
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7. Capability indices 
 

Capability indices describe the actual process as well as the achievement of a process to 

be expected in the future. In general, one understands by the capability index the relation of 
tolerance to the dispersion. 

The reference is a range of 3 respectively 3s, where 99.73% are inside the specification. 

In case of a production process, it concerns to the process capability index Cp. 
 

For the consideration of a mean value displacement (divergence of the ideal process situa-
tion), the index Cpk is introduced which is normally worse than Cp (or equal in case of no 

displacement). As a rule, a process is capable, if Cpk  1,33. 

In following the relations are shown for different distribution forms: 

Normal distribution 
The normal distribution is to be applied if divergences to the nominal value are caused 
through random variations. 
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If the real mean and the standard deviation is known, so µ and  must be used instead of x  
and s. Alternatively Cpk can be calculated with the following formula: 

 zCC ppk  1  

and z is defined by: 
 

   
2/)(

2/)(

LSLUSL

LSLUSLx
z




       
2/)( LSLUSL

xx
z soll




  

    for centric nominal value  for non-centric nominal value 

Examples:   

 

 

 

 

 

 

Cp = 1,33  Cpu = 1,33  Cpo = 1,33  Cpk  = 1,33  Cp = 1,33  Cpu = 2,0  Cpo = 0,67  Cpk  = 0,67 

 

with 
LSL  :  Lower Specification Limit 
USL :  Upper Specification Limit  

x  :  Mean 

USL-LSL = 8  

4  

USL-LSL = 8  

6  4  2  
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An application for this method is for example:  

\Templates\9_Capability\ Process_Capability_Analysis_CpCpk.vxg 

Lognormal-distribution 
 
The log normal distribution is to be applied if the distribution is limited on the left unilater-
ally, only positive values are given and divergences to the nominal value are caused 
through random variations, which works multiplicative. 
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If concrete values are not given, logx
 and logs

 can be calculated with the following approxi-
mation formulas: 
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An application for this method is for example:  

\Templates\9_Capability\ Process_Capability_Analysis_CpCpk.vxg 
 
Please note that all data has to be logarithmized including the limits. If the lower limit is 0, 
only the upper index Cpo is valid. 
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Folded normal distribution 1st type 
The folded normal distribution is to be applied if the distribution is limited on the left unilat-
erally and only positive values are given. The capability index is defined by a general equa-
tion: 

ppk uC  1
3

1
 

p  =  relative fraction outside the upper specification limit, and u is the quantile of  
        the standardized normal distribution  

       
Instead of this alternatively the so-called percentile-method can be used, which is de-
scribed in the next but one chapter. This is useful if there is only a less relative fraction p. 

An application for this method is: \Templates\9_Capability\ Process_ Capability_ 
Folded_Normal_Distribution.vxg 

The relative fraction outside p will be estimated via a Weibull-Distribution in the border 
area. 

Folded normal distribution 2nd type (Rayleigh-distribution) 
The type of distribution is used, e.g., for unbalance. Also here is valid the general formula: 

ppk uC  1
3

1
 with 

2

4 









 r

USL

ep
)



 

Non-parametric (distribution free) Percentile-method 

For non-known distributions the so-called percentile-method is to be applied. In general, it is 
valid: 

%135,0%865,99 XX

LSLUSL
C p 


  

For a normal distribution the denominator corresponds 6s. For a non-normal distribution, 
the relation area can be determined as it is described in the ISO / TR 12783.  

Analogously for the normal distribution it is valid: 

%135,0%50
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  and   

%50%865,99

%50
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 
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An application for this method is:  

\Templates\9_Capability\ Process_Capability_non_normally_distributed.vxg 

99,73% 
X0,135% X99,865% 

X50% 
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Distributions forms for several design characteristics 

The following table shows an overview, for which design attribute which distribution has to 

be used: 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 
 
 
 

 

Applications for capability studies: 
 

Regarding the application one distinguishes: 

- Process Capability Study (PCS) 

- Machine Capability Study (MCS) 

- Measurement System Analysis (MSA) 

 

 

  

Attribute Symbol Distribution 
Linear measure  N 

Straightness  F1 

Planeness (flatness)  F1 

Roundness  F1 

Cylindric form  F1 

Line shape  F1 

Face form  F1 

Roughness  F1 

Unbalance  F2 

Parallelism  F1 

Rectangularity  F1 

Angularity  F1 

Position  F2 

Concentricity  F2 

Symmetry  F1 

True running  F1/F2 

Axial run-out  F1 

N :  Normal distribution 
F1 :  Folded normal 1st type 
F2 :  Folded normal 2nd type 
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Process Capability Study PCS 

PCS concerns to a longer time period. One use sample in fixed intervals and parts measures 
relevant quality characteristics of the product (min. 20 samples with n = 3-5). There must be 
considered influences of the machine, the material, the method, the operator and the sur-
roundings. The process capability coefficients Cp and Cpk are used for the representation of 

the result. The calculation is described in the relations represented above. 
 

Machine Capability Study MCS 

MCS is carried out for a short period. Here basically the influence of the machine and the 
method will be analyzed. Influences of different materials, operators or environment terms 
are not considered and, hence, should be very steady. The formula is the same like for the 
Process capability study, but here the formula symbols are Cm and Cmk. The recommended 

sample size is 50, at least 20 parts. One also calls this a short time capability study. In gen-

eral, this causes a higher demand in machine capability indices Cm,Cmk  1,67.  

Hint: The indices Cm, Cmk are no longer used in the current ISO norm. Instead of these Pp/Ppk 
or Cp/Cpk are used. 
 

Measurement System Analysis with ANOVA 

Measurement System Analysis investigations are the basic requirement for carrying out Ca-
pability Studies. They are intended to ensure that the used measuring equipment is suitable.  
Note: With destructive tests (e.g., tensile or bend tests), a "substitute normal" must be used 
that is not destroyed (such as a thicker part, etc.). If there is force measurement of destroying 
test specimens, the test specimen can, for example, be replaced by a spring whose charac-
teristic is in the test specimen's force/stroke range. 

Procedures 

Overall, a differentiation is made between the following influences: 
 

1. Repeatability on a "reference" = constant master part 
(former process 1), pure test equipment deviation. 
 

2. Repeatability on different parts (former process 3) 
Consideration of the value range to be measured.  
 

3. Reproducibility on different parts and different appraisers (former process 2) 

Consideration of different appraisers. 
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According to VDA Volume 5 or the ISO 22514-7, measuring uncertainties are observed by 
means of the corresponding standard deviations that are expressed by the symbol u (meas-

uring uncertainty budgets). The calculation is performed using an analysis of variance 
(ANOVA).  

The overview below shows the most important measuring uncertainties: 
 

Proportion Calculation Description 

Resolution of 
the display 

K�& =  ��/√12 RE     Resolution of  

          the equipment 

Systematic devia-
tion 

 KE= =  �g̅�L g� �/√3 

g̅�   Disp. average val. of 

normal g�  Reference value of  

normal 

Repeatability on 
normal K&��  =   � 13 − 1 -Ug= − g̅�V�>

=?@  

g=    Meas. val. of the    

repetition i 

n       Number of repetitions 
 

  
From this, the influence of the instrument (MS = measuring system) is formed as an inter-

mediate result (simplified representation considering no linearity deviation): 
       K��  =   �K� ,� +   KE�� +  �Fg�K�&� ; K&��� �  
 

The calibration uncertainty of the normal K� , should be considerably less than the total 

measuring uncertainty (recommendation of ucal   0.15 uMS). Refer to the calibration certificate 
for the calibration uncertainty.  

       %���  =   100% ∙ ! ∙ � ∙ ��� +��   

 
 
Requirement:  %QMS  15% 

 
This corresponds to the older requirement: 

      �� = e,� ∙+��� ! %    ;  ��! = e,@ ∙+��L�q̅ Lq��! %    

 
 

In addition to the measurement uncertainties of the pure measuring system, influences 
from the part variation and the appraiser are also added. Overall, the measurement uncer-
tainty of the entire measuring process is determined by: 
 

g̅� :  mean of the measurements g�   :  mean of reference standard  

sg      :  standard deviation  

k = 2 VDA Standard for confidence level 95.45 % 
k = 3 for confidence level 99.73 %, if the application 
            requires, or the specialist department has  

corresponding normative stipulations, e.g.,  
threaded fastener Technology.  
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Measuring process = Measuring uncertainty of instrument +  
                                          Measuring uncertainty of equipment & appraiser 
 

The effects are determined by ANOVA with a variance analysis (see also Chapter ANOVA). 

In this method the effects are a combination of parts-variation, the appraiser, and the inter-

action between these together. The biggest advantage of the ANOVA is the consideration of 

the interaction, which is why this method is preferable. To assess the effects separately, one 

divides the sum of the square-errors over all measurements in sub-totals and their variances. 

The classic representation in the Anglo-Saxon world is: 

 

 

    DF   SS   MS   F 

Part     9   1,181E-05   1,313E-06 71,7 

Appraiser     2   3,640E-07   1,820E-07 9,9 

Part*Appraiser (interact.)   18   3,293E-07   1,830E-08 0,7 

Repeatability   30   7,700E-07   2,567E-08  

Total   59   1,328E-05   

 

The table of the MSA is: 

 

 

 

 

 

 

First of all, the sums of squares of the table data will be formed horizontally and vertically 

(Sum of Squares). With the help of the degrees of freedom DF the variance can be deter-

mined (Mean Square) and the standard-deviation of the set. The results are in each case 

multiplicated with the factor 6 the standard-deviations, which means that 99.73% of the parts 

are included. Via the F-value, which is the ratio of the sum of variances of the appraiser to 

the repetitions the significances can be determined (which results mostly in the p-value). 

In the example one has to consider that the results are different by calculation with interaction 

compared. 

The Visual-XSel template for this method is:  

\Templates\9_Capability\ Measurement_System_Analysis_ANOVA+VDA5.vxg 
 

 Sym.  Sym.  

Repeatability EV   9,080E-04 %EV 18,2 

Appr.-influence AV   5,351E-04 %AV 10,7 

Interaction IA   0,000E-01 %IA 0,0 

Part-variation PV   2,782E-03 %PV 30,0 

Measurem. Equipem. RR   1,054E-03 %R&R 21,1 

Degress of Freedom 
number of Infor-
mationen 

Sum of Squares Mean Square 
Variance = SS/DF 

F-value 

6 ∙ ��²&�  

�²&� 

%�&� = ��¢ ∙ 100% �� =   y�£� + �£� + ��� 
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The scope of the equipment and the appraiser is: 
 

Portion Calculation Description 

Repeatability of test object K&�� =  y¤*&� MSEV Variance repeatability 

Reproducibility of appraiser KB�   =  y¤*B� MSAV Variance of appraiser 

Interaction K �B   = y¤*�B MSIA Variance Interaction 

 

Overall, the measuring process is determined by (simplified view): 

 K�¥  =   �K� ,� + KE�� +  �Fg�K�&� ;  K&��� ;  K&��� � + KB�� + K�B�  
 

In a similar way to the repetition and comparability precision %R&R reference is made to 

the tolerance and it yields the key figure:  %��¥ =  100% ∙ ! ∙ � ∙ ��¦ §��L���         

 

The requirement is:  %¨©ª   20 .. 30% (depends on company requirements) 

 
Example 

 
 
In this example, the requirement was met with %QMS   15%, but the uncertainties from re-
peatability at different parts and appraiser are too high � %QMP = 35.2% > 20%. The reason 

can be in an incorrect measuring range, which cannot cover the variation of the parts. The 
appraisers should be re-instructed ("operational definition"), so that all proceed in the same 
way. 
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Overview of the methods 

The overview below is a comparison with the old methods mentioned above:  

 
 

 Repeatability Repeatability  
Part to part 

Reproducibility 
Part to part & Ap-
praiser 

 Testing with 

reference standard 

Testing with various 

parts 

Testing with various 

parts and various 
appraiser 

VDA Volume 5 
(ISO 22514-7) 

uEVR, uBI uRE, 

ucal, ulin 

uEVO uEVO, uAV, (uIA) 

Requirement QMS ≤ 15 % QMP ≤ 20 % QMP ≤ 20 % 

Former classic 

methods 

Method 1  Method 3 
range 

Method 2 
range, mean value 

difference 

Cg/Cgk ≥ 1,33  %R&R ≤ 20 % %R&R ≤ 20 % 

 
Other influences on measurement uncertainties 

Along with the proportions of measurement uncertainties described above, there is a series 

of other possible influences such as stability and temperature.  

 

 

Statistical methods

Interaction

Conversion

Procedure 

Accessibi l i ty

Form deviation

Surface

Deformation

Calibration

Range

Stabil i ty

Material Resolution

Arrangement

Drift

Humidity

Vibration

Voltage /  Current

Temperature

Dust

Method

Different appraiser

Instruction

Physical condition 

Concentration

Carefulness

Mother Nature

Measurement

uncertainty

Man Power Machine Measurement

Influences 
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Here too, as regards calculation further measurement uncertainties uinfluence are cumulative in 

accordance with the Gaussian law of error propagation. 

 

Especially measuring equipment holding devices and their possible deformation may have 

considerable influence on measurement uncertainties, see example mentioned in Ishikawa 

diagram. These should be quantified by tests as far as possible. If this is not possible, the 

percentage shares shall be considered e.g., by rigidity calculations. Furthermore, manufac-

turers’ specifications shall be considered, e.g., in case of electronic measurement sensors. 

Reducing the measuring uncertainty by repetitions  

In the event that the requirement is not met but no alternative measuring equipment is avail-
able, the possibility of repetitions exists. By multiple repeat measurements and averaging, it 
is possible to achieve a reduction in measuring uncertainty. It is possible to reduce random 

measuring uncertainties with m-repetitions by a factor m . The proportion uEVO then becomes 
 K&��∗ =  K&��√�  

 
If uEVO is known from previous measurements, it is possible to determine the necessary num-
ber of repetitions to achieve the required measuring uncertainty. 

 
Measurement chain  
 

 
 

MSA for discrete characteristics 
 

Discrete or attributive characteristics are measurements which can only deliver a result that 
is good or bad (two levels). This is often the case, e.g., in subjective observations.  
In the gauge R&R for discrete characteristics process, to appraiser’s "measure" different 
parts twice each. That might for example be done on parts that are either intact or faulty.  If 
there are deviations between the results of one appraiser, or between different appraisers, 
these are counted. The ratio between different results and the number of parts should not 
be more than 10%.  
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In what is called Cohen's kappa method, the appraiser is told to measure one part three 

times (result as 0 or 1). This doesn’t detect deviations between appraisers, but also devia-
tions from the actual values (reference measurements as the true status of the parts).  

Score values are calculated based on the ratio between the deviations and the reference 
values, and must be tested against the confidence ranges from the binomial distribution. 

Because it relates to a reference value, this method is more meaningful than the gage R&R 
method. For more information, refer to MSA 4. 
 

In what is called the Bowker process, three types can be taken into account, e.g., good, 
bad and additionally, the "non-uniform" result. At least 40 different test objects are tested by 
2 appraisers, 3 times each. Each of the 40 results is allocated to three classes: 
 

Class 1:  All 3 repetitions produced the good result 

Class 2:  Different results within the 3 repetitions 
Class 3:  All 3 repetitions produced the bad result 
 

The result in the form of a cross table is tested for symmetry using the ² distribution. See 
VDA 5 for more information. 
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8. Statistical hypothesis tests  
 

 
 
For executing the most important statistical tests the following templates including exam-
ples are available. Those are available in the directory \Templates\4_StatisticalTests: 
 

²-Test of goodness of fit 
 
Similar to the KS-test, a sample of a population is compared to a theoretical distribution. 
The test statistic is determined by: 
 

 
 2

2

1







H H

H

B E

Ei

k

 

 

with k=number of classes resp. characteristics. This test value can be determined by the 
Visual-XSel function Chi²  (see functions category statistical tests). The observed frequen-

cies stand in column 1, the expected in column 2. If the expected frequencies for a contin-
gency-table stands in an own table area, the function Chi²Contingency2 has to be used. 

There is a check of the null hypothesis: the noticed distribution HB corresponds to the ex-

pected HE, whereby here the absolute single frequencies are meant. In general, the ²-test 

of goodness of fit ascertains distribution irregularities. If there are small sample volumes the 
KS-Test rather recovers deviants from normal distribution. 
This test statistic is compared to a critical value, which can be found in pertinent statistical 

tables, or can be specified via Visual-XSel function CriticalWorth_Chi²( f, alpha, ² kr ) (with 

alpha = 1-). Here degree of freedom f is needed, which is determined as follows: 

 
f = k - 1 - a 
 
whereby a is the number of the estimated additional parameters. At assimilation to a Binomial 
distribution or Poisson distribution a=1, at normal distribution a=1, 2 or 3. If x and s are 

estimated from the categorized data, 3 degrees of freedom are needed, if x and  are cal-

culated directly from the original data, 2 degrees of freedom are needed and if µ and  are 

known and the unknown parameter a is estimated from the original data, just 1 degree of 
freedom is needed. 

 

If  ²  > ²crit  the null hypothesis is rejected on the level of significance  
 

The example file is named StatTest_Chi2Goodness.vxg, which can be adjusted easily for 
own analysis. If another distribution than the normal distribution should be tested, this has to 

be exchanged accordingly in the subprogram ExpectedValues . 
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It has to be taken into consideration that the check for single frequencies<1 is inaccurate. 
For monitoring this own subprogram CheckMinFrequency has been defined, which supplies 

corresponding hints. However, a calculation is carried out at any rate. If there are too small 
single frequencies for certain characteristics, those have to be summed up manually with 

other values, by what different class distances develop. 
 

See also ²-Homogeneity test 

²-Homogeneity test 
 

In a so-called multi-field- or contingency-table with r lines and c columns frequencies are 
situated with characteristic MB listed in columns and characteristic MA listed in lines. 

 
 MB1 MB2 MB3 MB4 MBc 

MA1 n11 n21 n31 n4.. nc1 

MA2 n12 n22 n32 n4.. nc2 

MA3 n13 n23 n33 n4.. nc3 

MA.. n1.. n2.. n3.. n4.. nc4 

MAr n1r n2r n3r n4r Ncr 

 
The expectation frequencies are calculated for each field by HE = ni*nj/n, whereby 

ni = line sum, nj = column sum and n = sum total. 
 

It is allowed to use the test, if all expectation frequencies >=1 ! If there are smaller expecta-
tion frequencies, the table should be simplified by summarization of sub occupied fields. 
 
Null hypothesis is: characteristic values are independent from each other or distributed ho-
mogeneously. 
 
Test statistic is calculated by 
 

 2

2

11
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which can be calculated by the function Chi²Contingency1 (see functions category statisti-
cal tests). This test statistic is compared to a critical value, which can be found in pertinent 

statistical tables, or can be determined via the Visual-XSel function CriticalWorth_Chi²( f, 

alpha, ² kr ) (with alpha = 1-). Here a degree of freedom f is needed, which is determined 
by: f = (r-1)*(c-1). 

 

If  ²  > ²crit  the null hypothesis is rejected on the level of significance  . 

 
The corresponding example can be found in the file StatTest_Chi2Homogen.vxg and can 
be adjusted for own tests. A component and its improvement measures are observed re-
garding its failure behavior: 
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Question is, if the measures have a temporal influence on the failure behavior. ² results 

17,04, the critical value kr is for the level of significance 0,05 and the degree of freedom 4 

4,0,95 = 9,46 and therefore smaller than ², that means there is no independence of charac-
teristics, a temporal influence on the failure behavior does exist (there is no influence on the 
null hypothesis). 

 

See also ²-Test of goodness of fit und ²- Multi field test 

 

²- Multi field test 
 

Several samples of a population are compared. The null hypothesis is: the mean number of 
errors per unit is equal to the complete population. 

 
The so-called contingency table looks like following:  

 
Population i 1 2 ... k 

         
Sampling volume n1 n2 ... nk 

     
Number of errors in 

a sample 

x1 x2 ... xk 

 
The test statistic is determined by: 
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which also can be calculated by the visual-XSel function Chi²Contingency3 (see functions 

 Starting con-

str. 

Measure 1 Measure 2 

Failure after  

1 week 

14 22 32 

Failure after 

2 weeks 

18 16 8 

Failure after  
3 weeks 

8 2 2 
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category statistical tests). ² is compared to a critical value, which can be found in pertinent 

statistical tables, or can be determined via the Visual-XSel function CriticalWorht_Chi²( f, 

alpha, ² kr ) (with alpha = 1-). Here a degree of freedom f is needed, which is determined 

by: f = k-1. 
The example file is StatTest_Chi2Multifield.vxg and can easily be adjusted for own evalua-
tions. The same method is used for the template  
StatTest_Defects_2Samples_Contingency.vxg 
 

If ² > ² crit , the null hypothesis is rejected on the level of significance. 
 

See also ²-Homogeneity test 

 

Binomial-test 
 
The binomial distribution describes the number of faulty unities in random checks. The 
number of faulty unities in the random check can be used for a monitoring of the portion of 
faulty unities in the total population The likelihood density is: 
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with   f1= 2(x+1)  and  f2 = 2(n-x) 
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with   f1= 2(n-x+1)  and  f2 = 2x 
 
The one-sided confidence level is: 
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with   f1= 2(x+1)  and  f2 = 2(n-x) 
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The hypothesis m events are equal po will be rejected if  Z > u1-/2 
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As a test for a hypothesis whether a given faulty portion is within the confidence area lies is 
the template StatTest_Defects_1Sample_to_Specification.vxg. 
 

Kolmogorov-Smirnov-Assimilation test 
 
The Kolmogorov-Smirnov-Assimilation Test (short KS-Test) check the assimilation of an ob-
served distribution to any expected distribution. Especially at existence of small sampling 
volumes the KS-Test detects rather variances from the normal distribution. In general distri-

bution irregularities better can be proved via ²-Test. The KS-Test also can be used for con-
tinuous and for discrete distributions. 
The null hypothesis is tested: The sample is descended from a known distribution. For each 
value the relative cumulative frequencies are compared and the maximum difference value 
is used as test statistic Ttest. 
 

prüf

B E

T
H H

n


max
 

 
This test statistic is compared to a critical value, which can be found in pertinent statistical 
tables, or can be determined via the Visual-XSel function CriticalWorth_KS( n, alpha, Tkr ) 

(with alpha =  ). 
 

If Ttest  > Tcrit the null hypothesis is rejected on the level of significance  . 
 
The example file is called StatTest_KolmogSmirnov_Assim.vxg, which can easily be used 
for own data. In this file the number of points of a cube is checked. Of course, the same 
number is expected for all six sides, but there are coincidental variances. So, the maximum 
variance of cumulative frequencies is compared to an equal distribution. This does not exist 
in Visual-XSel and therefore has to be defined as an own subprogram (DistribEqual). If e.g. 
there is a test for another evaluation versus a normal distribution, the DistribEqual has to be 
exchanged to DistribNormal (see functions category statistical distributions). 
 

Shapiro-Wilk test 
 

The Shapiro-Wilk test, proposed in 1965, calculates a W statistic that tests whether a ran-
dom sample, x1, x2, ..., xn comes from (specifically) a normal distribution (null hypothesis). 
The w statistic is calculated as follows:  

test 
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The null hypothesis is rejected on a significance level if w < wcrit . The a weights and the 
critical wcrit can be found in the literature. 
The alternative to this is to use a following test value T: 


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
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
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1
ln


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The coefficients ,  and  can be found also in the literature. The advantage of Ttest is, that 

the result can be compared directly with the u-value of the normal distribution (quantile of 
the standardized normal distribution).  If Ttest<-1,645 the null hypothesis is rejected (signifi-

cance level =0,05). 

To use this test there is available the template:  

StatTest_ShapiroWilk_normal_distribution.vxg 

Anderson-Darling test of normal-distribution 
 

The Anderson Darling test checks the null hypothesis that the sample data comes from a 
normal-distributed population. 
This test is suitable for small and big samples size and considers in particular the edge ar-
eas of the data. 
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and )( iu for the probability of the u-values of the normal-distribution. 

With the help of A² there is defined the z-value: 
 


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The following table shows the p-value for the adequate z-value: 

 
 
 
 
 
 

z  0, 2 p-value = 1 − exp(−13,436 + 101,14z − 223,73 z2) 

0, 2 < z   0,34 p-value = 1 − exp(−8,318 + 42,796z − 59,938 z2) 

0, 34 < z  0, 6 p-value = exp (0,9177 − 4, 279z − 1,38 z2) 

0, 6 < z p-value = exp(1,2937 − 5, 709z + 0,0186 z2) 
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The p-value is the confidence level for the alternative hypothesis that the data are not nor-
mal-distributed. Therefore, the data is normal-distributed if the p-value > 0.05. 
 
The adequate template for this method is  
StatTest_Normal_Distribution_Anderson_Darling.vxg. 
 
Literature  /23/ .. /24/ 

t-test for two samples 
This test checks the null hypothesis: The mean values of both samples are equal. From s 
and x  of both samples the test statistic ttest is calculated in subprogram t_Test of the file 
StatTest_t.vxg . (The subprogram is also directly available as tTest in the selection functions 
category Statistical Tests). 

t
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Degree of freedom f is determined by: 
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This test statistic is compared to a critical value tkr, which can be found in pertinent statisti-
cal tables, or can be determined via the function CriticalWorth_t( f, alpha, tkr ) (with alpha 

= 1 - /2 ). 
 

If ttest  > tcrit  the null hypothesis is rejected on the level of significance  . 
 

Strictly speaking a F-Test should be executed before each t-test, to confirm the precondi-
tioned equality of variances. If the null hypothesis of the variances is rejected, the t-test de-
livers wrong values. 
 

The double-sided confidence range is determined by: 
 

x x t s x x t sf d f d1 2 1 2 1 2 1 2 1 2       , / , /( ) ) )  

 

See also  
t-Test for Comparison of a Sample with a Default 
U-Test for two Samples (distribution independent) 

test 
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Test for comparison of one sample with a default value 
 
This test checks the null hypothesis: the mean value of the sample corresponds to a de-
fault mean value µo. 
 
The test statistic is determined by 
 

u
x

npr
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This test statistic is compared to the u-value at an alleged level of significance . The u-

value can be determined in the category statistical distributions (with alpha = 1 - /2 ) by 

the function InvNormal(alpha, u ).  
 
The null hypothesis is rejected if for the double-sided test-case µ = µo   is:  

 

u upr kr  

 
Often there is the one-sided test questioned, for example if the mean is greater than an up-
per or a lower limit. The table shows the possible problems: 
 

 Ho H1 Ho is rejected if 

ox )  ox )  2/1  uu pr  

ox )  ox )   1uu pr
 

ox )  ox )   1uu pr
 

 

If  is not known and has to be estimated from s, the test statistic results with 
 

t
x

s
npr

o
 )

 

 
The null hypothesis is rejected, if for the double-sided test-case µ = µo    is: 
 
 |P"­%"| ®   P5$="  
 
The critical t-value can be found in pertinent statistical tables, or can be determined via the 

Visual-XSel function CriticalWorth_t( f; alpha; tkr ) (with f = n-1,  alpha = 1 - /2 ). 
 
See also t-Test for two samples 
 
The adequate template for this method is  
StatTest_t_1Sample.vxg 

test 
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U-test for two samples 
  
This test after Wilcoxon, Mann and Whitney tests over the order whether the median values 
of two spot checks are equal. It is the distribution-independent counterpart to the t-Test and 
insensitively against different variances. The U-Test is therefore put in if no normal-distribu-
tion can be presupposed. 
 
To the calculation of the test value U, one brings the n1 and n2 to big spot checks in a common 
ascending order, with which is noted to each position-number, from which comes the two 
spot checks it. Example: Following spot checks are available: 
 

 
Spot 1 

7 
1 4 
2 2 
3 6 
4 0 
4 8 
4 9 
5 2 

Spot 2 
3 
5 
6 

1 0 
1 7 
1 8 
2 0 
3 9       

 
In the common order emerges with the ranked numbers for the spot check 1 and 2 the val-
ues represented right with the position-sums R1 and R2. A test value can be determined for 
each spot check: 
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The in the end required test value U the smaller of the two, in this case U=U1=11, that is 

compared against a critical value of Ucrit, is in the presentation-file  
StatTest_U_Wilcoxon.vxg 
In case of the fact that there are the same values one speaks of binding. In this case a mid-
dle rank is formed in each case and the rank sums are provided with a correction factor. 
More information will be found in the literature. 

  
If  U < Ucrit, the hypothesis that the median values of the spot check are equal is rejected. 

 
See also t-Test for Two Samples 
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F-test 
 
The variances of two samples are tested.  
 
The null hypothesis is: the samples are descended from the same population.  
 
The test statistic is formed by: 
 

F
s

spr  1

2

2

2  

 
whereby the larger variance is always in the counter, so that Ftest  >= 1. This value is com-
pared to the critical F-value, which can be found in pertinent statistical tables, or can be 
determined via the Visual-XSel function CriticalWorth_F( f1, f2, alpha, Fcrit ) ( with alpha = 1-

/2 ). The degree of freedom f1 and  f2  results from f1 = n1 - 1 and f2 = n2 - 1, whereby the 
index 1 always refers to the sample value with the larger variance. 
  

If Ftest  > Fcrit the null hypothesis is rejected on the level of significance  . 

 
The example file is called StatTest_F.vxg, which can be used for own evaluations. 
 
See also Rank Dispersion Test 
 

Outlier test 
 

With this test a series can be checked on one or several outliers. Precondition is that data 
are normal distributed. Sequentially this test can be repeated as long as no outlier can be 
determined any more. After ascertainment of an outlier this has to be removed from the 
series, before the next test is called. The test measurement is:  
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which will be compared to a critical value Tcrit . The test is carried out within the available 
function OutlierTest in the category statistical tests. What will be supplied back is the index 
of the line in the matrix (resp. table), in which an outlier has been ascertained. In the example 
file StatTest_Outlier.vxg there is a program, which eliminates corresponding values from a 
series, before the next test is carried out. 
 

test 

test 
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After run of this program all outliers will be written on the right side besides the series. 
 

Balanced simple Analysis of Variance 
 

Expectation values of several samples (number k) with same volume n are compared. The 

null hypothesis is: all expectations values are equal. Precondition for the test is that i =  . 

The test statistic is formed by: 
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whereby xi and si of the respective samples are assumed. This value is compared with the 
critical F-value, which can be found in pertinent statistical tables, or can be determined via 

Visual-XSel function CriticalWorth_F( f1, f2, alpha, Fkr ) ( with alpha = 1- ). The degree of 
freedom f1 and  f2  results from f1 = k-1 and f2 = k(n-1). 

test 
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If Ftest  > Fcrit the null hypothesis is rejected on the level of significance  . 
 
The double-sided confidence belt is determined by the critical t-values (CriticalWorht_t( f2; 

alpha; t)  with alpha = 1-2 to 
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The corresponding example file is StatTest_BalVariance_Analysis.vxg, which easily can be 

adjusted for own evaluations. 
 

See also Bartlett Test 
 

Bartlett-test 
 
More than two populations are compared. The null hypothesis is: all variances are equal. 
Precondition for test application is that ni ≥ 5. The test statistic results to: 
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with k = number of populations = number of samples. xi and s²i of the respective samples are 
taken for granted, respectively have to be calculated before. 

²pr is compared to a critical value, which can be found in pertinent statistical tables, or can 

be determined via Visual-XSel function CriticalWorth_Chi²( f, alpha, ² crit , with alpha = 1-

). Here a so-called degree of freedom f is needed, which is determined by: f = k-1. 
 

If ²test > ² crit, the null hypothesis has to be rejected on the level of significance . 
 
The example file is StatTest_Bartlett.vxg and can easily be adjusted for own evaluations. 
 
See also: Balanced Analysis of Variance 
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Rank dispersion test according to Siegel and Tukey 
 
At this test two samples are compared to each other, where you cannot assume that they 
are normal distributed. The test is free of distribution. The null hypothesis Ho is: both samples 
belong to a common population. 
While executing the tests both samples are gathered up in a series and sorted. The smallest 
value gets ranking 1, the both largest values get descending rankings 2 and 3, the next 
smallest values 4 and 5 ascending and so on. If there is an odd number of observations, the 
middle observation gets no ranking so that the highest ranking always is an even number. 
For distinguishing which value belongs to which sample, those are indicated before (value 1 
for sample 1 and value 2 for sample 2). Afterwards the total of ranking numbers for each 
sample is formed and issued. 
The more the ranking number totals distinguish, the less it is probable that they belong to 
the same population. 
 

In the following table the lower and upper limits of ranking numbers are shown  

 
 

Ho is rejected (=0,05 double sided resp. =0,025 one sided) if R1 or R2 exceeds or falls 
below or reaches the lower respectively upper barrier. 

 
The file StatTest_Rank_Dispersion.vxg is used as submission, which can be adjusted for 

own evaluations. For following both samples R1=134 and R2=76 have been determined. As 
it can be seen in the above table that R1<78 and R2>132. So, the null hypothesis has to be 

rejected, there is no dispersion difference. 
 

Sample 1 Sample 2 

10,1 15,3 

7,3 3,6 

12,6 16,5 

2,4 2,9 

6,1 3,3 

8,5 4,2 

8,8 4,9 

9,4 7,3 

10,1 11,7 

9,8 13,1 

 

n1->

n2=n1

n2=n1+1

n2=n1+2

n2=n1+3

n2=n1+4

n2=n1+5

4

10

11

12

13

14

14

 

26

29

32

35

38

42

5

17

18

20

21

22

23

 

38

42

45

49

53

57

6

26

27

29

31

32

34

 

52

57

61

65

70

74

7

36

38

40

42

44

46

 

69

74

79

84

89

94

8

49

51

53

55

58

60

 

87

93

99

105

110

116

9

62

65

68

71

73

76

 

109

115

121

127

134

140

10

78

81

84

88

91

84

 

132

139

146

152

159

166



104  ©  C. Ronniger  2025 

 

Test of a best fit straight line  
 

Any best fit straight line is tested on linearity and gradient. This test is a summarization of 
both single available submissions. 
 
The file StatTest_StraightLine.vxg is used as submission, which can be adjusted for own 
evaluations. 
 

Test on equal regression coefficients 
Two series are tested on equal regression coefficients. There the following t-value is calcu-
lated, 
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which is compared to a critical tcrit on the level of significance =5% . Both regression coef-

ficients are equal, if t < |tcrit| . 
 

The file StatTest_2_RegrCoeff.vxg is used as submission, which can be adjusted for own 
evaluations. 

 

Linearity test 
 
Tests a series on linearity. See also Test of an Equation Straight line  
The data entered in the table page T1 are categorized via the function Classify and written 

in the table page T2. All occurring values within one class are entered here horizontally. 
Out of this matrix a F-value is calculated: 
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which will be compared on the level of significance =5%. If F < Fcrit (k-2,n-k), there is a 

significant linearity. 
 

The file StatTest_Linearity.vxg is used as submission, which can be adjusted for own eval-
uations. 
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Gradient test of a regression 

 
It is tested, if the gradient of an equation straight line significantly differs from 0. A t-value is 

formed as quotient of a regression coefficient b to its variation. From this the value  is 

determined from the student’s t-distribution and compares this to the level of significance 

=5%. If  < 5%, significantly a gradient > 0 does exist. 

See also Test of an Equation Straight Line, where also this test is included. 
 
The file StatTest_Gradient_Regression.vxg is used as submission, which can be adjusted 
for own evaluations. 
 
 

Independence test of p series of measurements 
 
Test the correlation-coefficients on mutual independence. For example, this test is used to 

check at a multiple regression, if all variables are necessary. 
 
Data are entered in the table page T1. First the so-called correlation matrix is formed (stands 
after start of program in table page T2). There the correlation coefficients r are listed in pairs 
in every possible combination of series of measurements. A limit R‘ is determined on the 

level of significance  via student’s t- distribution: 
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and iterativly rlimit is calculated, which is compared to the maximum founded correlation co-

efficient. If rmax < rlimit, then on the level =5% no pair of series of measurements significantly 

depends on each other. 
 

The file StatTest_Independence_p_Series.vxg is used as submission, which can be ad-
justed for own evaluations.  
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9. Normal-distribution 
The normal distribution is the most frequently and most common form of the probability dis-
tribution. The normal-distribution is relevant when random events affect a process. Many 
natural, economic and engineering processes can be achieved by the normal distribution, 
either exactly or at least at a very good approximation (especially processes that act inde-
pendently to factors in different directions). 
 

 

 

 

 

 

 

 

 

 

In the top histogram the data is grouped in suitable classes. The Gaussian-curve represents 

the ideal probability-density of this histogram, if one has endless data and an absolute small 

class-width. In the cumulative probability chart below one can read the sum of values, which 

are less or equal to x. That is the area under the Gaussian curve. The mean is the probability 

at 50% (here at x = 0). The confidence interval of the mean value is 
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t1-/2 : Quantile of the Student-dis-

tribution with the significance it 
the real standard-deviation in not 
known. 
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The slope of the straight line represents the scatter (standard-deviation) of the data. At sx 
there is 16%, respectively 84% of the data. Both charts have their own advantages. In the 

histogram a mixed distribution can be detected easily if there are more than one caps. In the 

cumulative probability chart one can see each data-point and the deviation from the straight-

line is a non-regularity to the normal-distribution. 

 

 











68,27% 

95,45% 

99,73% 

99,9937% 

99,999943% 

99,9999998% 
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Divergences of the normal distribution 
 

 

Bimodal distribution 
Valley in the middle-> combination of two normal distribu-

tions.  
Cause: Mixing distribution from two processes. 

Remedy: Grouping and subdivision in both dimensions of 
influence. 

 

 

Rectangular distribution  
More or less level without distinctive maximum. 

Cause: Confounding of several distributions.  
Remedy: Subdivision in dimensions of influence with the 

help of a systems analysis.  

 

 

Comb-shaped distribution 
Alternately big and small frequencies. 
Cause: Often measuring-, rounding-error or unsuitable 
class width. 
Remedy: Check measuring range or use smaller class 
width. 
 
 

 

Unsymmetrical distribution 
Unsymmetrical course at the short and long end. 
Cause: Natural limitation on the left against 0 and high val-
ues are seldom. 
Remedy: Logarithmic values causes mostly a normal distri-
bution. 
 

 

 

Askew distribution 
Unsymmetrical unilaterally abrupt sloping side. 
Cause: Cut-off distribution by sorting out. 
Remedy: Check process and need of sorting out (cost). 
 
 

 

Truncated distribution 
Accumulation of a group lying on the edge. 

Cause: Grouping of all measurements lying on the right. 
Remedy: Clarification the classing of the data or the sort-

ing. 



     
    

©  C. Ronniger  2025   109  

 

10. Statistical factors 
 

Factor Definition Description 

DF Degrees of Freedom For statistical tests 

N Number of populations e.g., production quantity 

n Sampling volume of degree of 
freedom 

or number of independent trials 

In general: number of parts 

f Degree of freedom for statistical tests 

k Number of categories  

i Ordinal number In general: running index 

H Frequency Mostly in % 

xo Reference value of population Mostly approximated mean value 

x  Mean value of a sample 



n

i

ix
n

x
1

1  

x Class size In general: increment 

) Mean value of population  

R Range R = xmax - xmin 

s Standard deviation of sample  
s

x x

n





 2

1
 

s² Variance of sample  

 Standard deviation of population  

p Probability of success  

b Form parameter at Weibull Gradient of equation straight line in 

Weibull-Net 

t Life cycle of variable at Weibull route, length of use, load changes and 

so on 

T Characteristically service life at 
Weibull 

For 63.2% failure frequency 

w Weighting Number of alleged values 

 Level of significance for statistical 
check 

The transfer parameter alpha often is 

alpha = 1-  resp. 1 - /2 for double 

sided tests 

z Number of variables or factors  
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