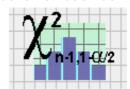
Statistische Tests und Auswertungen



χ²-Anpassungstest

Verglichen wird, ähnlich wie beim Kolmogorov-Smirnov-Anpassungstest, eine Stichprobe aus einer Grundgesamtheit gegen eine theoretische Verteilung. Die Prüfgröße wird bestimmt sich durch:

$$\chi^2 = \sum_{i=1}^k \frac{\left(H_B - H_E\right)^2}{H_E}$$

mit k=Anzahl der Klassen, bzw. Merkmale. Dieser Prüfwert kann durch die Visual-XSel Funktion *Chi*² ermittelt werden (siehe Funktionen Rubrik statistische Tests). Die beobachteten Häufigkeiten stehen in der Spalte 1 die erwarteten in der Spalte 2. Stehen die erwarteten Häufigkeiten für eine Mehrfeldtafel in einem eigenen Tabellenbereich, so ist die Funktion *Chi*²*Mehrfeld*² zu verwenden.

Geprüft wird die Nullhypothese: Die beobachtete Verteilung H_B entspricht der erwarteten H_E , wobei hier die absoluten Einzelhäufigkeiten gemeint sind. Der χ^2 -Anpassungstest stellt im allgemeinen Verteilungsirregularitäten fest. Bei Vorliegen kleiner Stichprobenumfänge entdeckt der KS-Test eher Abweichungen von der Normalverteilung. Bei den erwarteten Häufigkeiten ist die Klassenbreite K zu berücksichtigen. Für die Normalverteilung gilt somit:

$$H_E = K \frac{1}{\sqrt{2\pi s^2}} e^{-\frac{(x-\bar{x})^2}{2s^2}}$$

Die Daten sind zur Eingabe bereits klassiert anzugeben. Die Klassenbreite kann durch die Funktion *MinAbstandWerte* bestimmt werden.

Diese Prüfgröße wird gegen einen kritischen Wert verglichen, der in einschlägigen statistischen Tabellen zu finden ist, oder über die Visual-XSel Funktion:

KritischerWert_Chi²(f, alpha, $\chi^2 kr$)

bestimmt werden kann (mit alpha = $1-\alpha$). Hierbei wird ein Freiheitsgrad f benötigt, der sich folgendermaßen bestimmt:

$$f = k - 1 - a$$

wobei a die Anzahl der geschätzten zusätzlichen Parameter ist. Bei der Anpassung an eine Binomial- oder Poissonverteilung ist a=1. Für eine Normalverteilung gilt: Werden \bar{x} und s aus den klassierten Daten geschätzt, so ist a=2. Werden \bar{x} und σ direkt aus den Originaldaten berechnet, so ist a=1 und ist μ und σ bekannt so beträgt a=0.

Ist $\chi^2 > \chi^2_{kr}$ wird die Nullhypothese auf dem Signifikanzniveau α abgelehnt.

Die Beispieldatei lautet $StatTest_Chi2Anp.vxg$, die für eigene Analysen leicht angepasst werden kann. Die Vorlage $StatTest_Normalverteilung.vxg$ beinhaltet den Test auf Normalverteilung und wählt automatisch den KS oder χ^2 -Test. Sollte eine andere Verteilung als die Normalverteilung getestet werden, so ist im Unterprogramm Erwartungswerte diese entsprechend auszutauschen.

Einzelhäufigkeiten<1 sollten vermieden werden. Zur Überwachung hierfür ist ein eigenes Unterprogramm *CheckMinHäufigkeit* definiert worden, dass entsprechende Hinweise liefert. Eine Berechnung wird jedoch in jeden Fall durchgeführt. Sind für bestimmte Merkmale zu kleine Einzelhäufigkeiten vorhanden (<1), so sollten diese mit anderen Werten zusammengefaßt werden. Die Klassenmitte ist entsprechend anzupassen. Siehe auch χ^2 -Homogenitätstest, Literatur: Sachs

χ²-Homogenitätstest

In einer sogenannten Mehrfeld- oder Kontingenztafel mit r Zeilen und c Spalten befinden sich Häufigkeiten mit dem Merkmal M_{B} aufgelistet in Spalten und dem Merkmal M_{A} aufgelistet in Zeilen.

	M _B 1	MB2	Мвз	Мв4	Мвс
MA1	n11	n21	n31	n4	nc1
MA2	n12	n22	n32	n4	nc2
Маз	n13	n23	n33	n4	nc3
Ma	n1	n2	n3	n4	nc4
MAr	n1r	n2r	n3r	n4r	ncr

Die Erwartungshäufigkeiten berechnen sich für jedes Feld durch $H_E = n_i \cdot n_j / n$, wobei $n_i = Z$ eilensumme, $n_j = S$ paltensumme und n = Gesamtsumme ist. Der Test darf angewandt werden, wenn alle Erwartungshäufigkeiten >=1 sind! Treten kleinere Erwartungshäufigkeiten auf, dann ist die Tafel durch Zusammenfassung unterbesetzter Felder zu vereinfachen.

Die Nullhypothese lautet: Die Merkmalswerte sind unabhängig voneinander oder homogen verteilt. Die Prüfgröße berechnet sich nach

$$\chi^{2} = n \left[\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{n_{i,j}^{2}}{n_{i} n_{j}} - 1 \right]$$

die durch die Visual-XSel Funktion *Chi²Mehrfeld1* berechnet werden kann (siehe Funktionen Rubrik statistische Tests). Diese Prüfgröße wird gegen einen kritischen Wert verglichen, der in einschlägigen statistischen Tabellen zu finden ist, oder über die Funktion *KritischerWert_Chi²*(f, alpha, χ^2 _{kr}) bestimmt werden kann (mit alpha = 1- α). Hierbei wird ein Freiheitsgrad f benötigt, der sich bestimmt durch: $f = (r-1)^*(c-1)$.

Ist $\chi^2 > \chi^2_{kr}$ wird die Nullhypothese auf dem Signifikanzniveau α abgelehnt.

Das entsprechende Beispiel ist in der Datei *StatTest_Chi2Homogen.vxg* vorhanden und kann für eigene Prüfungen angepasst werden. Ein Bauteil und dessen Verbesserungsmaßnahmen wird bezüglich seines Ausfallverhaltens beobachtet:

	Ausgangskonstr	Maßnahme 1	Maßnahme 2
Ausfall nach 1 Wochen	14	22	32
Ausfall nach 2 Wochen	18	16	8
Ausfall nach 3 Wochen	8	2	2

Die Frage ist, ob die Maßnahmen einen zeitlichen Einfluss auf das Ausfallverhalten hat. Der χ^2 ergibt 17,04, der kritische Wert χ_{kr} ist für das Signifikanzniveau 0,05 und dem

Freiheitsgrad 4 $\chi_{4,0.95}$ = 9,46 und somit kleiner als χ^2 , d.h. es liegt keine Unabhängigkeit der Merkmale vor, ein zeitlicher Einfluss auf das Ausfallverhalten ist vorhanden (Die Nullhypothese ist kein Einfluss vorhanden).

Siehe auch χ^2 -Anpassungstest und χ^2 - Mehrfeldtest. Literatur : Sachs

χ²-Mehrfeldtest

Verglichen werden mehrere Stichproben aus einer Grundgesamtheit. Die Nullhypothese lautet: Die mittlere Anzahl Fehler je Einheit ist in allen betrachteten Grundgesamtheiten gleich.

Die sogenannte Kontingenztafel sieht folgendermaßen aus:

Grundgesamtheit i 1 2 ... k

Stichprobenumfang n₁ n₂ ... n_k

Anzahl Fehler in der x_1 x_2 ... x_k Stichprobe

Die Prüfgröße bestimmt sich durch:

$$\chi^{2} = \sum_{i=1}^{k} \frac{\left(x_{i} - n_{i} \frac{x_{ges}}{n_{ges}}\right)^{2}}{n_{i} \frac{x_{ges}}{n_{ges}}}$$

mit
$$x_{ges} = \sum_{i=1}^{k} x_i$$
 und $n_{ges} = \sum_{i=1}^{k} n_i$

die auch über die Visual-XSel Funktion *Chi²Mehrfeld3* berechnet werden kann (siehe Funktionen Rubrik statistische Tests). χ^2 wird gegen einen kritischen Wert verglichen, der in einschlägigen statistischen Tabellen zu finden ist, oder über die Visual-XSel Funktion *KritischerWert_Chi²*(f, alpha, χ^2 _{kr}) bestimmt werden kann (mit alpha = 1- α). Hierbei wird ein Freiheitsgrad f benötigt, der sich bestimmt durch: f = k-1.

Die Beispieldatei lautet *StatTest_Chi2Mehrfeld.vxg* und kann leicht für eigene Auswertungen angepasst werden.

Wenn $\chi^2 > \chi^2 kr$ ist, ist die Nullhypothese auf dem Signifikanzniveau α zu verwerfen.

Siehe auch χ^2 -Homogenitätstest , Literatur : DGQ Band 11-05